Metamath Proof Explorer


Theorem hashxp

Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012)

Ref Expression
Assertion hashxp A Fin B Fin A × B = A B

Proof

Step Hyp Ref Expression
1 xpeq2 B = if B Fin B A × B = A × if B Fin B
2 1 fveq2d B = if B Fin B A × B = A × if B Fin B
3 fveq2 B = if B Fin B B = if B Fin B
4 3 oveq2d B = if B Fin B A B = A if B Fin B
5 2 4 eqeq12d B = if B Fin B A × B = A B A × if B Fin B = A if B Fin B
6 5 imbi2d B = if B Fin B A Fin A × B = A B A Fin A × if B Fin B = A if B Fin B
7 0fin Fin
8 7 elimel if B Fin B Fin
9 8 hashxplem A Fin A × if B Fin B = A if B Fin B
10 6 9 dedth B Fin A Fin A × B = A B
11 10 impcom A Fin B Fin A × B = A B