Metamath Proof Explorer


Theorem hashxrcl

Description: Extended real closure of the # function. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Assertion hashxrcl A V A *

Proof

Step Hyp Ref Expression
1 nn0ssre 0
2 ressxr *
3 1 2 sstri 0 *
4 pnfxr +∞ *
5 snssi +∞ * +∞ *
6 4 5 ax-mp +∞ *
7 3 6 unssi 0 +∞ *
8 elex A V A V
9 hashf . : V 0 +∞
10 9 ffvelrni A V A 0 +∞
11 8 10 syl A V A 0 +∞
12 7 11 sselid A V A *