Metamath Proof Explorer


Theorem hatomistici

Description: CH is atomistic, i.e. any element is the supremum of its atoms. Remark in Kalmbach p. 140. (Contributed by NM, 14-Aug-2002) (New usage is discouraged.)

Ref Expression
Hypothesis hatomistic.1 A C
Assertion hatomistici A = x HAtoms | x A

Proof

Step Hyp Ref Expression
1 hatomistic.1 A C
2 ssrab2 x HAtoms | x A HAtoms
3 atssch HAtoms C
4 2 3 sstri x HAtoms | x A C
5 chsupcl x HAtoms | x A C x HAtoms | x A C
6 4 5 ax-mp x HAtoms | x A C
7 1 chshii A S
8 atelch y HAtoms y C
9 8 anim1i y HAtoms y A y C y A
10 sseq1 x = y x A y A
11 10 elrab y x HAtoms | x A y HAtoms y A
12 10 elrab y x C | x A y C y A
13 9 11 12 3imtr4i y x HAtoms | x A y x C | x A
14 13 ssriv x HAtoms | x A x C | x A
15 ssrab2 x C | x A C
16 chsupss x HAtoms | x A C x C | x A C x HAtoms | x A x C | x A x HAtoms | x A x C | x A
17 4 15 16 mp2an x HAtoms | x A x C | x A x HAtoms | x A x C | x A
18 14 17 ax-mp x HAtoms | x A x C | x A
19 chsupid A C x C | x A = A
20 1 19 ax-mp x C | x A = A
21 18 20 sseqtri x HAtoms | x A A
22 elssuni y x HAtoms | x A y x HAtoms | x A
23 11 22 sylbir y HAtoms y A y x HAtoms | x A
24 chsupunss x HAtoms | x A C x HAtoms | x A x HAtoms | x A
25 4 24 ax-mp x HAtoms | x A x HAtoms | x A
26 23 25 sstrdi y HAtoms y A y x HAtoms | x A
27 26 ex y HAtoms y A y x HAtoms | x A
28 atne0 y HAtoms y 0
29 28 adantr y HAtoms y x HAtoms | x A y 0
30 ssin y x HAtoms | x A y x HAtoms | x A y x HAtoms | x A x HAtoms | x A
31 6 chocini x HAtoms | x A x HAtoms | x A = 0
32 31 sseq2i y x HAtoms | x A x HAtoms | x A y 0
33 30 32 bitr2i y 0 y x HAtoms | x A y x HAtoms | x A
34 chle0 y C y 0 y = 0
35 8 34 syl y HAtoms y 0 y = 0
36 33 35 bitr3id y HAtoms y x HAtoms | x A y x HAtoms | x A y = 0
37 36 biimpa y HAtoms y x HAtoms | x A y x HAtoms | x A y = 0
38 37 expr y HAtoms y x HAtoms | x A y x HAtoms | x A y = 0
39 38 necon3ad y HAtoms y x HAtoms | x A y 0 ¬ y x HAtoms | x A
40 29 39 mpd y HAtoms y x HAtoms | x A ¬ y x HAtoms | x A
41 40 ex y HAtoms y x HAtoms | x A ¬ y x HAtoms | x A
42 27 41 syld y HAtoms y A ¬ y x HAtoms | x A
43 imnan y A ¬ y x HAtoms | x A ¬ y A y x HAtoms | x A
44 42 43 sylib y HAtoms ¬ y A y x HAtoms | x A
45 ssin y A y x HAtoms | x A y A x HAtoms | x A
46 44 45 sylnib y HAtoms ¬ y A x HAtoms | x A
47 46 nrex ¬ y HAtoms y A x HAtoms | x A
48 6 choccli x HAtoms | x A C
49 1 48 chincli A x HAtoms | x A C
50 49 hatomici A x HAtoms | x A 0 y HAtoms y A x HAtoms | x A
51 50 necon1bi ¬ y HAtoms y A x HAtoms | x A A x HAtoms | x A = 0
52 47 51 ax-mp A x HAtoms | x A = 0
53 6 7 21 52 omlsii x HAtoms | x A = A
54 53 eqcomi A = x HAtoms | x A