Step |
Hyp |
Ref |
Expression |
1 |
|
hatomistic.1 |
|
2 |
|
ssrab2 |
|
3 |
|
atssch |
|
4 |
2 3
|
sstri |
|
5 |
|
chsupcl |
|
6 |
4 5
|
ax-mp |
|
7 |
1
|
chshii |
|
8 |
|
atelch |
|
9 |
8
|
anim1i |
|
10 |
|
sseq1 |
|
11 |
10
|
elrab |
|
12 |
10
|
elrab |
|
13 |
9 11 12
|
3imtr4i |
|
14 |
13
|
ssriv |
|
15 |
|
ssrab2 |
|
16 |
|
chsupss |
|
17 |
4 15 16
|
mp2an |
|
18 |
14 17
|
ax-mp |
|
19 |
|
chsupid |
|
20 |
1 19
|
ax-mp |
|
21 |
18 20
|
sseqtri |
|
22 |
|
elssuni |
|
23 |
11 22
|
sylbir |
|
24 |
|
chsupunss |
|
25 |
4 24
|
ax-mp |
|
26 |
23 25
|
sstrdi |
|
27 |
26
|
ex |
|
28 |
|
atne0 |
|
29 |
28
|
adantr |
|
30 |
|
ssin |
|
31 |
6
|
chocini |
|
32 |
31
|
sseq2i |
|
33 |
30 32
|
bitr2i |
|
34 |
|
chle0 |
|
35 |
8 34
|
syl |
|
36 |
33 35
|
bitr3id |
|
37 |
36
|
biimpa |
|
38 |
37
|
expr |
|
39 |
38
|
necon3ad |
|
40 |
29 39
|
mpd |
|
41 |
40
|
ex |
|
42 |
27 41
|
syld |
|
43 |
|
imnan |
|
44 |
42 43
|
sylib |
|
45 |
|
ssin |
|
46 |
44 45
|
sylnib |
|
47 |
46
|
nrex |
|
48 |
6
|
choccli |
|
49 |
1 48
|
chincli |
|
50 |
49
|
hatomici |
|
51 |
50
|
necon1bi |
|
52 |
47 51
|
ax-mp |
|
53 |
6 7 21 52
|
omlsii |
|
54 |
53
|
eqcomi |
|