Metamath Proof Explorer


Theorem hauscmp

Description: A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010) (Proof shortened by Mario Carneiro, 14-Dec-2013)

Ref Expression
Hypothesis hauscmp.1 X = J
Assertion hauscmp J Haus S X J 𝑡 S Comp S Clsd J

Proof

Step Hyp Ref Expression
1 hauscmp.1 X = J
2 simp2 J Haus S X J 𝑡 S Comp S X
3 eqid y J | w J x w cls J w X y = y J | w J x w cls J w X y
4 simpl1 J Haus S X J 𝑡 S Comp x X S J Haus
5 simpl2 J Haus S X J 𝑡 S Comp x X S S X
6 simpl3 J Haus S X J 𝑡 S Comp x X S J 𝑡 S Comp
7 simpr J Haus S X J 𝑡 S Comp x X S x X S
8 1 3 4 5 6 7 hauscmplem J Haus S X J 𝑡 S Comp x X S z J x z cls J z X S
9 haustop J Haus J Top
10 9 3ad2ant1 J Haus S X J 𝑡 S Comp J Top
11 elssuni z J z J
12 11 1 sseqtrrdi z J z X
13 1 sscls J Top z X z cls J z
14 10 12 13 syl2an J Haus S X J 𝑡 S Comp z J z cls J z
15 sstr2 z cls J z cls J z X S z X S
16 14 15 syl J Haus S X J 𝑡 S Comp z J cls J z X S z X S
17 16 anim2d J Haus S X J 𝑡 S Comp z J x z cls J z X S x z z X S
18 17 reximdva J Haus S X J 𝑡 S Comp z J x z cls J z X S z J x z z X S
19 18 adantr J Haus S X J 𝑡 S Comp x X S z J x z cls J z X S z J x z z X S
20 8 19 mpd J Haus S X J 𝑡 S Comp x X S z J x z z X S
21 20 ralrimiva J Haus S X J 𝑡 S Comp x X S z J x z z X S
22 eltop2 J Top X S J x X S z J x z z X S
23 10 22 syl J Haus S X J 𝑡 S Comp X S J x X S z J x z z X S
24 21 23 mpbird J Haus S X J 𝑡 S Comp X S J
25 1 iscld J Top S Clsd J S X X S J
26 10 25 syl J Haus S X J 𝑡 S Comp S Clsd J S X X S J
27 2 24 26 mpbir2and J Haus S X J 𝑡 S Comp S Clsd J