Metamath Proof Explorer


Theorem hauscmp

Description: A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010) (Proof shortened by Mario Carneiro, 14-Dec-2013)

Ref Expression
Hypothesis hauscmp.1 X=J
Assertion hauscmp JHausSXJ𝑡SCompSClsdJ

Proof

Step Hyp Ref Expression
1 hauscmp.1 X=J
2 simp2 JHausSXJ𝑡SCompSX
3 eqid yJ|wJxwclsJwXy=yJ|wJxwclsJwXy
4 simpl1 JHausSXJ𝑡SCompxXSJHaus
5 simpl2 JHausSXJ𝑡SCompxXSSX
6 simpl3 JHausSXJ𝑡SCompxXSJ𝑡SComp
7 simpr JHausSXJ𝑡SCompxXSxXS
8 1 3 4 5 6 7 hauscmplem JHausSXJ𝑡SCompxXSzJxzclsJzXS
9 haustop JHausJTop
10 9 3ad2ant1 JHausSXJ𝑡SCompJTop
11 elssuni zJzJ
12 11 1 sseqtrrdi zJzX
13 1 sscls JTopzXzclsJz
14 10 12 13 syl2an JHausSXJ𝑡SCompzJzclsJz
15 sstr2 zclsJzclsJzXSzXS
16 14 15 syl JHausSXJ𝑡SCompzJclsJzXSzXS
17 16 anim2d JHausSXJ𝑡SCompzJxzclsJzXSxzzXS
18 17 reximdva JHausSXJ𝑡SCompzJxzclsJzXSzJxzzXS
19 18 adantr JHausSXJ𝑡SCompxXSzJxzclsJzXSzJxzzXS
20 8 19 mpd JHausSXJ𝑡SCompxXSzJxzzXS
21 20 ralrimiva JHausSXJ𝑡SCompxXSzJxzzXS
22 eltop2 JTopXSJxXSzJxzzXS
23 10 22 syl JHausSXJ𝑡SCompXSJxXSzJxzzXS
24 21 23 mpbird JHausSXJ𝑡SCompXSJ
25 1 iscld JTopSClsdJSXXSJ
26 10 25 syl JHausSXJ𝑡SCompSClsdJSXXSJ
27 2 24 26 mpbir2and JHausSXJ𝑡SCompSClsdJ