Description: A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010) (Proof shortened by Mario Carneiro, 14-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hauscmp.1 | |
|
Assertion | hauscmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hauscmp.1 | |
|
2 | simp2 | |
|
3 | eqid | |
|
4 | simpl1 | |
|
5 | simpl2 | |
|
6 | simpl3 | |
|
7 | simpr | |
|
8 | 1 3 4 5 6 7 | hauscmplem | |
9 | haustop | |
|
10 | 9 | 3ad2ant1 | |
11 | elssuni | |
|
12 | 11 1 | sseqtrrdi | |
13 | 1 | sscls | |
14 | 10 12 13 | syl2an | |
15 | sstr2 | |
|
16 | 14 15 | syl | |
17 | 16 | anim2d | |
18 | 17 | reximdva | |
19 | 18 | adantr | |
20 | 8 19 | mpd | |
21 | 20 | ralrimiva | |
22 | eltop2 | |
|
23 | 10 22 | syl | |
24 | 21 23 | mpbird | |
25 | 1 | iscld | |
26 | 10 25 | syl | |
27 | 2 24 26 | mpbir2and | |