| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hauscmp.1 |
|
| 2 |
|
hauscmplem.2 |
|
| 3 |
|
hauscmplem.3 |
|
| 4 |
|
hauscmplem.4 |
|
| 5 |
|
hauscmplem.5 |
|
| 6 |
|
hauscmplem.6 |
|
| 7 |
|
haustop |
|
| 8 |
3 7
|
syl |
|
| 9 |
8
|
ad3antrrr |
|
| 10 |
1
|
topopn |
|
| 11 |
9 10
|
syl |
|
| 12 |
6
|
eldifad |
|
| 13 |
12
|
ad3antrrr |
|
| 14 |
1
|
clstop |
|
| 15 |
9 14
|
syl |
|
| 16 |
|
simplr |
|
| 17 |
|
unieq |
|
| 18 |
|
uni0 |
|
| 19 |
17 18
|
eqtrdi |
|
| 20 |
19
|
adantl |
|
| 21 |
16 20
|
sseqtrd |
|
| 22 |
|
ss0 |
|
| 23 |
21 22
|
syl |
|
| 24 |
23
|
difeq2d |
|
| 25 |
|
dif0 |
|
| 26 |
24 25
|
eqtrdi |
|
| 27 |
15 26
|
eqtr4d |
|
| 28 |
|
eqimss |
|
| 29 |
27 28
|
syl |
|
| 30 |
|
eleq2 |
|
| 31 |
|
fveq2 |
|
| 32 |
31
|
sseq1d |
|
| 33 |
30 32
|
anbi12d |
|
| 34 |
33
|
rspcev |
|
| 35 |
11 13 29 34
|
syl12anc |
|
| 36 |
|
elin |
|
| 37 |
|
id |
|
| 38 |
|
elpwi |
|
| 39 |
38
|
sseld |
|
| 40 |
|
difeq2 |
|
| 41 |
40
|
sseq2d |
|
| 42 |
41
|
anbi2d |
|
| 43 |
42
|
rexbidv |
|
| 44 |
43 2
|
elrab2 |
|
| 45 |
44
|
simprbi |
|
| 46 |
39 45
|
syl6 |
|
| 47 |
46
|
ralrimiv |
|
| 48 |
|
eleq2 |
|
| 49 |
|
fveq2 |
|
| 50 |
49
|
sseq1d |
|
| 51 |
48 50
|
anbi12d |
|
| 52 |
51
|
ac6sfi |
|
| 53 |
37 47 52
|
syl2anr |
|
| 54 |
36 53
|
sylbi |
|
| 55 |
54
|
ad2antlr |
|
| 56 |
8
|
ad3antrrr |
|
| 57 |
|
frn |
|
| 58 |
57
|
ad2antrl |
|
| 59 |
|
simprr |
|
| 60 |
|
simpl |
|
| 61 |
|
fdm |
|
| 62 |
61
|
eqeq1d |
|
| 63 |
|
dm0rn0 |
|
| 64 |
62 63
|
bitr3di |
|
| 65 |
64
|
necon3bid |
|
| 66 |
65
|
biimpac |
|
| 67 |
59 60 66
|
syl2an |
|
| 68 |
36
|
simprbi |
|
| 69 |
68
|
ad2antlr |
|
| 70 |
|
ffn |
|
| 71 |
|
dffn4 |
|
| 72 |
70 71
|
sylib |
|
| 73 |
72
|
adantr |
|
| 74 |
|
fofi |
|
| 75 |
69 73 74
|
syl2an |
|
| 76 |
|
fiinopn |
|
| 77 |
76
|
imp |
|
| 78 |
56 58 67 75 77
|
syl13anc |
|
| 79 |
|
simpl |
|
| 80 |
79
|
ralimi |
|
| 81 |
80
|
ad2antll |
|
| 82 |
6
|
ad3antrrr |
|
| 83 |
|
eliin |
|
| 84 |
82 83
|
syl |
|
| 85 |
81 84
|
mpbird |
|
| 86 |
70
|
ad2antrl |
|
| 87 |
|
fnrnfv |
|
| 88 |
87
|
inteqd |
|
| 89 |
|
fvex |
|
| 90 |
89
|
dfiin2 |
|
| 91 |
88 90
|
eqtr4di |
|
| 92 |
86 91
|
syl |
|
| 93 |
85 92
|
eleqtrrd |
|
| 94 |
59
|
adantr |
|
| 95 |
8
|
ad4antr |
|
| 96 |
|
ffvelcdm |
|
| 97 |
96
|
adantll |
|
| 98 |
|
elssuni |
|
| 99 |
97 98
|
syl |
|
| 100 |
99 1
|
sseqtrrdi |
|
| 101 |
1
|
clscld |
|
| 102 |
95 100 101
|
syl2anc |
|
| 103 |
102
|
ralrimiva |
|
| 104 |
103
|
adantrr |
|
| 105 |
|
iincld |
|
| 106 |
94 104 105
|
syl2anc |
|
| 107 |
1
|
sscls |
|
| 108 |
95 100 107
|
syl2anc |
|
| 109 |
108
|
ralrimiva |
|
| 110 |
|
ssel |
|
| 111 |
110
|
ral2imi |
|
| 112 |
|
eliin |
|
| 113 |
112
|
elv |
|
| 114 |
|
eliin |
|
| 115 |
114
|
elv |
|
| 116 |
111 113 115
|
3imtr4g |
|
| 117 |
116
|
ssrdv |
|
| 118 |
109 117
|
syl |
|
| 119 |
118
|
adantrr |
|
| 120 |
92 119
|
eqsstrd |
|
| 121 |
1
|
clsss2 |
|
| 122 |
106 120 121
|
syl2anc |
|
| 123 |
|
ssel |
|
| 124 |
123
|
adantl |
|
| 125 |
124
|
ral2imi |
|
| 126 |
|
eliin |
|
| 127 |
126
|
elv |
|
| 128 |
125 115 127
|
3imtr4g |
|
| 129 |
128
|
ssrdv |
|
| 130 |
129
|
ad2antll |
|
| 131 |
|
iindif2 |
|
| 132 |
94 131
|
syl |
|
| 133 |
|
simplrl |
|
| 134 |
|
uniiun |
|
| 135 |
134
|
sseq2i |
|
| 136 |
|
sscon |
|
| 137 |
135 136
|
sylbi |
|
| 138 |
133 137
|
syl |
|
| 139 |
132 138
|
eqsstrd |
|
| 140 |
130 139
|
sstrd |
|
| 141 |
122 140
|
sstrd |
|
| 142 |
|
eleq2 |
|
| 143 |
|
fveq2 |
|
| 144 |
143
|
sseq1d |
|
| 145 |
142 144
|
anbi12d |
|
| 146 |
145
|
rspcev |
|
| 147 |
78 93 141 146
|
syl12anc |
|
| 148 |
55 147
|
exlimddv |
|
| 149 |
148
|
anassrs |
|
| 150 |
35 149
|
pm2.61dane |
|
| 151 |
3
|
adantr |
|
| 152 |
4
|
sselda |
|
| 153 |
12
|
adantr |
|
| 154 |
|
id |
|
| 155 |
6
|
eldifbd |
|
| 156 |
|
nelne2 |
|
| 157 |
154 155 156
|
syl2anr |
|
| 158 |
1
|
hausnei |
|
| 159 |
151 152 153 157 158
|
syl13anc |
|
| 160 |
|
3anass |
|
| 161 |
|
elssuni |
|
| 162 |
161 1
|
sseqtrrdi |
|
| 163 |
162
|
adantl |
|
| 164 |
|
incom |
|
| 165 |
164
|
eqeq1i |
|
| 166 |
|
reldisj |
|
| 167 |
165 166
|
bitrid |
|
| 168 |
163 167
|
syl |
|
| 169 |
151 7
|
syl |
|
| 170 |
1
|
opncld |
|
| 171 |
169 170
|
sylan |
|
| 172 |
171
|
adantr |
|
| 173 |
1
|
clsss2 |
|
| 174 |
173
|
ex |
|
| 175 |
172 174
|
syl |
|
| 176 |
168 175
|
sylbid |
|
| 177 |
176
|
anim2d |
|
| 178 |
177
|
anim2d |
|
| 179 |
160 178
|
biimtrid |
|
| 180 |
179
|
reximdva |
|
| 181 |
|
r19.42v |
|
| 182 |
180 181
|
imbitrdi |
|
| 183 |
182
|
reximdva |
|
| 184 |
159 183
|
mpd |
|
| 185 |
2
|
unieqi |
|
| 186 |
185
|
eleq2i |
|
| 187 |
|
elunirab |
|
| 188 |
186 187
|
bitri |
|
| 189 |
184 188
|
sylibr |
|
| 190 |
189
|
ex |
|
| 191 |
190
|
ssrdv |
|
| 192 |
|
unieq |
|
| 193 |
192
|
sseq2d |
|
| 194 |
|
pweq |
|
| 195 |
194
|
ineq1d |
|
| 196 |
195
|
rexeqdv |
|
| 197 |
193 196
|
imbi12d |
|
| 198 |
1
|
cmpsub |
|
| 199 |
198
|
biimp3a |
|
| 200 |
8 4 5 199
|
syl3anc |
|
| 201 |
2
|
ssrab3 |
|
| 202 |
|
elpw2g |
|
| 203 |
3 202
|
syl |
|
| 204 |
201 203
|
mpbiri |
|
| 205 |
197 200 204
|
rspcdva |
|
| 206 |
191 205
|
mpd |
|
| 207 |
150 206
|
r19.29a |
|