Step |
Hyp |
Ref |
Expression |
1 |
|
hauscmp.1 |
|
2 |
|
hauscmplem.2 |
|
3 |
|
hauscmplem.3 |
|
4 |
|
hauscmplem.4 |
|
5 |
|
hauscmplem.5 |
|
6 |
|
hauscmplem.6 |
|
7 |
|
haustop |
|
8 |
3 7
|
syl |
|
9 |
8
|
ad3antrrr |
|
10 |
1
|
topopn |
|
11 |
9 10
|
syl |
|
12 |
6
|
eldifad |
|
13 |
12
|
ad3antrrr |
|
14 |
1
|
clstop |
|
15 |
9 14
|
syl |
|
16 |
|
simplr |
|
17 |
|
unieq |
|
18 |
|
uni0 |
|
19 |
17 18
|
eqtrdi |
|
20 |
19
|
adantl |
|
21 |
16 20
|
sseqtrd |
|
22 |
|
ss0 |
|
23 |
21 22
|
syl |
|
24 |
23
|
difeq2d |
|
25 |
|
dif0 |
|
26 |
24 25
|
eqtrdi |
|
27 |
15 26
|
eqtr4d |
|
28 |
|
eqimss |
|
29 |
27 28
|
syl |
|
30 |
|
eleq2 |
|
31 |
|
fveq2 |
|
32 |
31
|
sseq1d |
|
33 |
30 32
|
anbi12d |
|
34 |
33
|
rspcev |
|
35 |
11 13 29 34
|
syl12anc |
|
36 |
|
elin |
|
37 |
|
id |
|
38 |
|
elpwi |
|
39 |
38
|
sseld |
|
40 |
|
difeq2 |
|
41 |
40
|
sseq2d |
|
42 |
41
|
anbi2d |
|
43 |
42
|
rexbidv |
|
44 |
43 2
|
elrab2 |
|
45 |
44
|
simprbi |
|
46 |
39 45
|
syl6 |
|
47 |
46
|
ralrimiv |
|
48 |
|
eleq2 |
|
49 |
|
fveq2 |
|
50 |
49
|
sseq1d |
|
51 |
48 50
|
anbi12d |
|
52 |
51
|
ac6sfi |
|
53 |
37 47 52
|
syl2anr |
|
54 |
36 53
|
sylbi |
|
55 |
54
|
ad2antlr |
|
56 |
8
|
ad3antrrr |
|
57 |
|
frn |
|
58 |
57
|
ad2antrl |
|
59 |
|
simprr |
|
60 |
|
simpl |
|
61 |
|
fdm |
|
62 |
61
|
eqeq1d |
|
63 |
|
dm0rn0 |
|
64 |
62 63
|
bitr3di |
|
65 |
64
|
necon3bid |
|
66 |
65
|
biimpac |
|
67 |
59 60 66
|
syl2an |
|
68 |
36
|
simprbi |
|
69 |
68
|
ad2antlr |
|
70 |
|
ffn |
|
71 |
|
dffn4 |
|
72 |
70 71
|
sylib |
|
73 |
72
|
adantr |
|
74 |
|
fofi |
|
75 |
69 73 74
|
syl2an |
|
76 |
|
fiinopn |
|
77 |
76
|
imp |
|
78 |
56 58 67 75 77
|
syl13anc |
|
79 |
|
simpl |
|
80 |
79
|
ralimi |
|
81 |
80
|
ad2antll |
|
82 |
6
|
ad3antrrr |
|
83 |
|
eliin |
|
84 |
82 83
|
syl |
|
85 |
81 84
|
mpbird |
|
86 |
70
|
ad2antrl |
|
87 |
|
fnrnfv |
|
88 |
87
|
inteqd |
|
89 |
|
fvex |
|
90 |
89
|
dfiin2 |
|
91 |
88 90
|
eqtr4di |
|
92 |
86 91
|
syl |
|
93 |
85 92
|
eleqtrrd |
|
94 |
59
|
adantr |
|
95 |
8
|
ad4antr |
|
96 |
|
ffvelrn |
|
97 |
96
|
adantll |
|
98 |
|
elssuni |
|
99 |
97 98
|
syl |
|
100 |
99 1
|
sseqtrrdi |
|
101 |
1
|
clscld |
|
102 |
95 100 101
|
syl2anc |
|
103 |
102
|
ralrimiva |
|
104 |
103
|
adantrr |
|
105 |
|
iincld |
|
106 |
94 104 105
|
syl2anc |
|
107 |
1
|
sscls |
|
108 |
95 100 107
|
syl2anc |
|
109 |
108
|
ralrimiva |
|
110 |
|
ssel |
|
111 |
110
|
ral2imi |
|
112 |
|
eliin |
|
113 |
112
|
elv |
|
114 |
|
eliin |
|
115 |
114
|
elv |
|
116 |
111 113 115
|
3imtr4g |
|
117 |
116
|
ssrdv |
|
118 |
109 117
|
syl |
|
119 |
118
|
adantrr |
|
120 |
92 119
|
eqsstrd |
|
121 |
1
|
clsss2 |
|
122 |
106 120 121
|
syl2anc |
|
123 |
|
ssel |
|
124 |
123
|
adantl |
|
125 |
124
|
ral2imi |
|
126 |
|
eliin |
|
127 |
126
|
elv |
|
128 |
125 115 127
|
3imtr4g |
|
129 |
128
|
ssrdv |
|
130 |
129
|
ad2antll |
|
131 |
|
iindif2 |
|
132 |
94 131
|
syl |
|
133 |
|
simplrl |
|
134 |
|
uniiun |
|
135 |
134
|
sseq2i |
|
136 |
|
sscon |
|
137 |
135 136
|
sylbi |
|
138 |
133 137
|
syl |
|
139 |
132 138
|
eqsstrd |
|
140 |
130 139
|
sstrd |
|
141 |
122 140
|
sstrd |
|
142 |
|
eleq2 |
|
143 |
|
fveq2 |
|
144 |
143
|
sseq1d |
|
145 |
142 144
|
anbi12d |
|
146 |
145
|
rspcev |
|
147 |
78 93 141 146
|
syl12anc |
|
148 |
55 147
|
exlimddv |
|
149 |
148
|
anassrs |
|
150 |
35 149
|
pm2.61dane |
|
151 |
3
|
adantr |
|
152 |
4
|
sselda |
|
153 |
12
|
adantr |
|
154 |
|
id |
|
155 |
6
|
eldifbd |
|
156 |
|
nelne2 |
|
157 |
154 155 156
|
syl2anr |
|
158 |
1
|
hausnei |
|
159 |
151 152 153 157 158
|
syl13anc |
|
160 |
|
3anass |
|
161 |
|
elssuni |
|
162 |
161 1
|
sseqtrrdi |
|
163 |
162
|
adantl |
|
164 |
|
incom |
|
165 |
164
|
eqeq1i |
|
166 |
|
reldisj |
|
167 |
165 166
|
syl5bb |
|
168 |
163 167
|
syl |
|
169 |
151 7
|
syl |
|
170 |
1
|
opncld |
|
171 |
169 170
|
sylan |
|
172 |
171
|
adantr |
|
173 |
1
|
clsss2 |
|
174 |
173
|
ex |
|
175 |
172 174
|
syl |
|
176 |
168 175
|
sylbid |
|
177 |
176
|
anim2d |
|
178 |
177
|
anim2d |
|
179 |
160 178
|
syl5bi |
|
180 |
179
|
reximdva |
|
181 |
|
r19.42v |
|
182 |
180 181
|
syl6ib |
|
183 |
182
|
reximdva |
|
184 |
159 183
|
mpd |
|
185 |
2
|
unieqi |
|
186 |
185
|
eleq2i |
|
187 |
|
elunirab |
|
188 |
186 187
|
bitri |
|
189 |
184 188
|
sylibr |
|
190 |
189
|
ex |
|
191 |
190
|
ssrdv |
|
192 |
|
unieq |
|
193 |
192
|
sseq2d |
|
194 |
|
pweq |
|
195 |
194
|
ineq1d |
|
196 |
195
|
rexeqdv |
|
197 |
193 196
|
imbi12d |
|
198 |
1
|
cmpsub |
|
199 |
198
|
biimp3a |
|
200 |
8 4 5 199
|
syl3anc |
|
201 |
2
|
ssrab3 |
|
202 |
|
elpw2g |
|
203 |
3 202
|
syl |
|
204 |
201 203
|
mpbiri |
|
205 |
197 200 204
|
rspcdva |
|
206 |
191 205
|
mpd |
|
207 |
150 206
|
r19.29a |
|