Metamath Proof Explorer


Theorem hauseqlcld

Description: In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses hauseqlcld.k φ K Haus
hauseqlcld.f φ F J Cn K
hauseqlcld.g φ G J Cn K
Assertion hauseqlcld φ dom F G Clsd J

Proof

Step Hyp Ref Expression
1 hauseqlcld.k φ K Haus
2 hauseqlcld.f φ F J Cn K
3 hauseqlcld.g φ G J Cn K
4 eqid J = J
5 eqid K = K
6 4 5 cnf F J Cn K F : J K
7 2 6 syl φ F : J K
8 7 ffvelrnda φ b J F b K
9 8 biantrurd φ b J F b G b I F b K F b G b I
10 fvex G b V
11 10 ideq F b I G b F b = G b
12 df-br F b I G b F b G b I
13 11 12 bitr3i F b = G b F b G b I
14 10 opelresi F b G b I K F b K F b G b I
15 9 13 14 3bitr4g φ b J F b = G b F b G b I K
16 fveq2 a = b F a = F b
17 fveq2 a = b G a = G b
18 16 17 opeq12d a = b F a G a = F b G b
19 eqid a J F a G a = a J F a G a
20 opex F b G b V
21 18 19 20 fvmpt b J a J F a G a b = F b G b
22 21 adantl φ b J a J F a G a b = F b G b
23 22 eleq1d φ b J a J F a G a b I K F b G b I K
24 15 23 bitr4d φ b J F b = G b a J F a G a b I K
25 24 pm5.32da φ b J F b = G b b J a J F a G a b I K
26 7 ffnd φ F Fn J
27 4 5 cnf G J Cn K G : J K
28 3 27 syl φ G : J K
29 28 ffnd φ G Fn J
30 fndmin F Fn J G Fn J dom F G = b J | F b = G b
31 26 29 30 syl2anc φ dom F G = b J | F b = G b
32 31 eleq2d φ b dom F G b b J | F b = G b
33 rabid b b J | F b = G b b J F b = G b
34 32 33 bitrdi φ b dom F G b J F b = G b
35 opex F a G a V
36 35 19 fnmpti a J F a G a Fn J
37 elpreima a J F a G a Fn J b a J F a G a -1 I K b J a J F a G a b I K
38 36 37 mp1i φ b a J F a G a -1 I K b J a J F a G a b I K
39 25 34 38 3bitr4d φ b dom F G b a J F a G a -1 I K
40 39 eqrdv φ dom F G = a J F a G a -1 I K
41 4 19 txcnmpt F J Cn K G J Cn K a J F a G a J Cn K × t K
42 2 3 41 syl2anc φ a J F a G a J Cn K × t K
43 5 hausdiag K Haus K Top I K Clsd K × t K
44 43 simprbi K Haus I K Clsd K × t K
45 1 44 syl φ I K Clsd K × t K
46 cnclima a J F a G a J Cn K × t K I K Clsd K × t K a J F a G a -1 I K Clsd J
47 42 45 46 syl2anc φ a J F a G a -1 I K Clsd J
48 40 47 eqeltrd φ dom F G Clsd J