Metamath Proof Explorer


Theorem hausflf

Description: If a function has its values in a Hausdorff space, then it has at most one limit value. (Contributed by FL, 14-Nov-2010) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis hausflf.x X = J
Assertion hausflf J Haus L Fil Y F : Y X * x x J fLimf L F

Proof

Step Hyp Ref Expression
1 hausflf.x X = J
2 hausflimi J Haus * x x J fLim X FilMap F L
3 2 3ad2ant1 J Haus L Fil Y F : Y X * x x J fLim X FilMap F L
4 haustop J Haus J Top
5 1 toptopon J Top J TopOn X
6 4 5 sylib J Haus J TopOn X
7 flfval J TopOn X L Fil Y F : Y X J fLimf L F = J fLim X FilMap F L
8 6 7 syl3an1 J Haus L Fil Y F : Y X J fLimf L F = J fLim X FilMap F L
9 8 eleq2d J Haus L Fil Y F : Y X x J fLimf L F x J fLim X FilMap F L
10 9 mobidv J Haus L Fil Y F : Y X * x x J fLimf L F * x x J fLim X FilMap F L
11 3 10 mpbird J Haus L Fil Y F : Y X * x x J fLimf L F