Metamath Proof Explorer


Theorem hausflf2

Description: If a convergent function has its values in a Hausdorff space, then it has a unique limit. (Contributed by FL, 14-Nov-2010) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis hausflf.x X = J
Assertion hausflf2 J Haus L Fil Y F : Y X J fLimf L F J fLimf L F 1 𝑜

Proof

Step Hyp Ref Expression
1 hausflf.x X = J
2 n0 J fLimf L F x x J fLimf L F
3 2 biimpi J fLimf L F x x J fLimf L F
4 1 hausflf J Haus L Fil Y F : Y X * x x J fLimf L F
5 euen1b J fLimf L F 1 𝑜 ∃! x x J fLimf L F
6 df-eu ∃! x x J fLimf L F x x J fLimf L F * x x J fLimf L F
7 5 6 sylbbr x x J fLimf L F * x x J fLimf L F J fLimf L F 1 𝑜
8 3 4 7 syl2anr J Haus L Fil Y F : Y X J fLimf L F J fLimf L F 1 𝑜