Metamath Proof Explorer


Theorem hausflimlem

Description: If A and B are both limits of the same filter, then all neighborhoods of A and B intersect. (Contributed by Mario Carneiro, 21-Sep-2015)

Ref Expression
Assertion hausflimlem A J fLim F B J fLim F U J V J A U B V U V

Proof

Step Hyp Ref Expression
1 simp1l A J fLim F B J fLim F U J V J A U B V A J fLim F
2 eqid J = J
3 2 flimfil A J fLim F F Fil J
4 1 3 syl A J fLim F B J fLim F U J V J A U B V F Fil J
5 flimtop A J fLim F J Top
6 1 5 syl A J fLim F B J fLim F U J V J A U B V J Top
7 simp2l A J fLim F B J fLim F U J V J A U B V U J
8 simp3l A J fLim F B J fLim F U J V J A U B V A U
9 opnneip J Top U J A U U nei J A
10 6 7 8 9 syl3anc A J fLim F B J fLim F U J V J A U B V U nei J A
11 flimnei A J fLim F U nei J A U F
12 1 10 11 syl2anc A J fLim F B J fLim F U J V J A U B V U F
13 simp1r A J fLim F B J fLim F U J V J A U B V B J fLim F
14 simp2r A J fLim F B J fLim F U J V J A U B V V J
15 simp3r A J fLim F B J fLim F U J V J A U B V B V
16 opnneip J Top V J B V V nei J B
17 6 14 15 16 syl3anc A J fLim F B J fLim F U J V J A U B V V nei J B
18 flimnei B J fLim F V nei J B V F
19 13 17 18 syl2anc A J fLim F B J fLim F U J V J A U B V V F
20 filinn0 F Fil J U F V F U V
21 4 12 19 20 syl3anc A J fLim F B J fLim F U J V J A U B V U V