Metamath Proof Explorer


Theorem haushmphlem

Description: Lemma for haushmph and similar theorems. If the topological property A is preserved under injective preimages, then property A is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypotheses haushmphlem.1 J A J Top
haushmphlem.2 J A f : K 1-1 J f K Cn J K A
Assertion haushmphlem J K J A K A

Proof

Step Hyp Ref Expression
1 haushmphlem.1 J A J Top
2 haushmphlem.2 J A f : K 1-1 J f K Cn J K A
3 hmphsym J K K J
4 hmph K J K Homeo J
5 n0 K Homeo J f f K Homeo J
6 simpl J A f K Homeo J J A
7 eqid K = K
8 eqid J = J
9 7 8 hmeof1o f K Homeo J f : K 1-1 onto J
10 9 adantl J A f K Homeo J f : K 1-1 onto J
11 f1of1 f : K 1-1 onto J f : K 1-1 J
12 10 11 syl J A f K Homeo J f : K 1-1 J
13 hmeocn f K Homeo J f K Cn J
14 13 adantl J A f K Homeo J f K Cn J
15 6 12 14 2 syl3anc J A f K Homeo J K A
16 15 expcom f K Homeo J J A K A
17 16 exlimiv f f K Homeo J J A K A
18 5 17 sylbi K Homeo J J A K A
19 4 18 sylbi K J J A K A
20 3 19 syl J K J A K A