Step |
Hyp |
Ref |
Expression |
1 |
|
haustop |
|
2 |
1
|
adantr |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
simpll |
|
6 |
|
difssd |
|
7 |
|
simplr |
|
8 |
1
|
ad2antrr |
|
9 |
|
simprl |
|
10 |
3
|
opncld |
|
11 |
8 9 10
|
syl2anc |
|
12 |
|
cmpcld |
|
13 |
7 11 12
|
syl2anc |
|
14 |
|
simprr |
|
15 |
|
elssuni |
|
16 |
15
|
ad2antrl |
|
17 |
|
dfss4 |
|
18 |
16 17
|
sylib |
|
19 |
14 18
|
eleqtrrd |
|
20 |
3 4 5 6 13 19
|
hauscmplem |
|
21 |
18
|
sseq2d |
|
22 |
21
|
anbi2d |
|
23 |
22
|
rexbidv |
|
24 |
20 23
|
mpbid |
|
25 |
8
|
adantr |
|
26 |
|
simprl |
|
27 |
|
simprrl |
|
28 |
|
opnneip |
|
29 |
25 26 27 28
|
syl3anc |
|
30 |
|
elssuni |
|
31 |
30
|
ad2antrl |
|
32 |
3
|
sscls |
|
33 |
25 31 32
|
syl2anc |
|
34 |
3
|
clsss3 |
|
35 |
25 31 34
|
syl2anc |
|
36 |
3
|
ssnei2 |
|
37 |
25 29 33 35 36
|
syl22anc |
|
38 |
|
simprrr |
|
39 |
|
vex |
|
40 |
39
|
elpw2 |
|
41 |
38 40
|
sylibr |
|
42 |
37 41
|
elind |
|
43 |
7
|
adantr |
|
44 |
3
|
clscld |
|
45 |
25 31 44
|
syl2anc |
|
46 |
|
cmpcld |
|
47 |
43 45 46
|
syl2anc |
|
48 |
|
oveq2 |
|
49 |
48
|
eleq1d |
|
50 |
49
|
rspcev |
|
51 |
42 47 50
|
syl2anc |
|
52 |
24 51
|
rexlimddv |
|
53 |
52
|
ralrimivva |
|
54 |
|
isnlly |
|
55 |
2 53 54
|
sylanbrc |
|