| Step |
Hyp |
Ref |
Expression |
| 1 |
|
haustop |
|
| 2 |
1
|
adantr |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
simpll |
|
| 6 |
|
difssd |
|
| 7 |
|
simplr |
|
| 8 |
1
|
ad2antrr |
|
| 9 |
|
simprl |
|
| 10 |
3
|
opncld |
|
| 11 |
8 9 10
|
syl2anc |
|
| 12 |
|
cmpcld |
|
| 13 |
7 11 12
|
syl2anc |
|
| 14 |
|
simprr |
|
| 15 |
|
elssuni |
|
| 16 |
15
|
ad2antrl |
|
| 17 |
|
dfss4 |
|
| 18 |
16 17
|
sylib |
|
| 19 |
14 18
|
eleqtrrd |
|
| 20 |
3 4 5 6 13 19
|
hauscmplem |
|
| 21 |
18
|
sseq2d |
|
| 22 |
21
|
anbi2d |
|
| 23 |
22
|
rexbidv |
|
| 24 |
20 23
|
mpbid |
|
| 25 |
8
|
adantr |
|
| 26 |
|
simprl |
|
| 27 |
|
simprrl |
|
| 28 |
|
opnneip |
|
| 29 |
25 26 27 28
|
syl3anc |
|
| 30 |
|
elssuni |
|
| 31 |
30
|
ad2antrl |
|
| 32 |
3
|
sscls |
|
| 33 |
25 31 32
|
syl2anc |
|
| 34 |
3
|
clsss3 |
|
| 35 |
25 31 34
|
syl2anc |
|
| 36 |
3
|
ssnei2 |
|
| 37 |
25 29 33 35 36
|
syl22anc |
|
| 38 |
|
simprrr |
|
| 39 |
|
vex |
|
| 40 |
39
|
elpw2 |
|
| 41 |
38 40
|
sylibr |
|
| 42 |
37 41
|
elind |
|
| 43 |
7
|
adantr |
|
| 44 |
3
|
clscld |
|
| 45 |
25 31 44
|
syl2anc |
|
| 46 |
|
cmpcld |
|
| 47 |
43 45 46
|
syl2anc |
|
| 48 |
|
oveq2 |
|
| 49 |
48
|
eleq1d |
|
| 50 |
49
|
rspcev |
|
| 51 |
42 47 50
|
syl2anc |
|
| 52 |
24 51
|
rexlimddv |
|
| 53 |
52
|
ralrimivva |
|
| 54 |
|
isnlly |
|
| 55 |
2 53 54
|
sylanbrc |
|