Metamath Proof Explorer


Theorem hausnei

Description: Neighborhood property of a Hausdorff space. (Contributed by NM, 8-Mar-2007)

Ref Expression
Hypothesis ist0.1 X = J
Assertion hausnei J Haus P X Q X P Q n J m J P n Q m n m =

Proof

Step Hyp Ref Expression
1 ist0.1 X = J
2 1 ishaus J Haus J Top x X y X x y n J m J x n y m n m =
3 2 simprbi J Haus x X y X x y n J m J x n y m n m =
4 neeq1 x = P x y P y
5 eleq1 x = P x n P n
6 5 3anbi1d x = P x n y m n m = P n y m n m =
7 6 2rexbidv x = P n J m J x n y m n m = n J m J P n y m n m =
8 4 7 imbi12d x = P x y n J m J x n y m n m = P y n J m J P n y m n m =
9 neeq2 y = Q P y P Q
10 eleq1 y = Q y m Q m
11 10 3anbi2d y = Q P n y m n m = P n Q m n m =
12 11 2rexbidv y = Q n J m J P n y m n m = n J m J P n Q m n m =
13 9 12 imbi12d y = Q P y n J m J P n y m n m = P Q n J m J P n Q m n m =
14 8 13 rspc2v P X Q X x X y X x y n J m J x n y m n m = P Q n J m J P n Q m n m =
15 3 14 syl5 P X Q X J Haus P Q n J m J P n Q m n m =
16 15 ex P X Q X J Haus P Q n J m J P n Q m n m =
17 16 com3r J Haus P X Q X P Q n J m J P n Q m n m =
18 17 3imp2 J Haus P X Q X P Q n J m J P n Q m n m =