Step |
Hyp |
Ref |
Expression |
1 |
|
ishaus2 |
|
2 |
|
topontop |
|
3 |
|
simp1 |
|
4 |
|
simp2 |
|
5 |
|
simp1 |
|
6 |
|
opnneip |
|
7 |
3 4 5 6
|
syl2an3an |
|
8 |
|
simp3 |
|
9 |
|
simp2 |
|
10 |
|
opnneip |
|
11 |
3 8 9 10
|
syl2an3an |
|
12 |
|
simpr3 |
|
13 |
|
ineq1 |
|
14 |
13
|
eqeq1d |
|
15 |
|
ineq2 |
|
16 |
15
|
eqeq1d |
|
17 |
14 16
|
rspc2ev |
|
18 |
7 11 12 17
|
syl3anc |
|
19 |
18
|
ex |
|
20 |
19
|
3expib |
|
21 |
20
|
rexlimdvv |
|
22 |
|
neii2 |
|
23 |
22
|
ex |
|
24 |
|
neii2 |
|
25 |
24
|
ex |
|
26 |
|
vex |
|
27 |
26
|
snss |
|
28 |
27
|
anbi1i |
|
29 |
|
vex |
|
30 |
29
|
snss |
|
31 |
30
|
anbi1i |
|
32 |
|
simp1l |
|
33 |
|
simp2l |
|
34 |
|
ss2in |
|
35 |
|
ssn0 |
|
36 |
35
|
ex |
|
37 |
36
|
necon4d |
|
38 |
34 37
|
syl |
|
39 |
38
|
ad2ant2l |
|
40 |
39
|
3impia |
|
41 |
32 33 40
|
3jca |
|
42 |
41
|
3exp |
|
43 |
31 42
|
syl5bir |
|
44 |
43
|
com3r |
|
45 |
44
|
imp |
|
46 |
45
|
3adant1 |
|
47 |
46
|
reximdv |
|
48 |
47
|
3exp |
|
49 |
48
|
com34 |
|
50 |
49
|
3imp |
|
51 |
28 50
|
syl5bir |
|
52 |
51
|
reximdv |
|
53 |
52
|
3exp |
|
54 |
53
|
com24 |
|
55 |
54
|
impd |
|
56 |
23 25 55
|
syl2and |
|
57 |
56
|
rexlimdvv |
|
58 |
21 57
|
impbid |
|
59 |
58
|
imbi2d |
|
60 |
59
|
2ralbidv |
|
61 |
2 60
|
syl |
|
62 |
1 61
|
bitrd |
|