Step |
Hyp |
Ref |
Expression |
1 |
|
hauspwdom.1 |
|
2 |
1
|
hausmapdom |
|
3 |
2
|
adantr |
|
4 |
|
simprr |
|
5 |
|
1nn |
|
6 |
|
noel |
|
7 |
|
eleq2 |
|
8 |
6 7
|
mtbiri |
|
9 |
8
|
adantr |
|
10 |
5 9
|
mt2 |
|
11 |
|
mapdom2 |
|
12 |
4 10 11
|
sylancl |
|
13 |
|
sdomdom |
|
14 |
13
|
adantl |
|
15 |
|
mapdom1 |
|
16 |
14 15
|
syl |
|
17 |
|
reldom |
|
18 |
17
|
brrelex2i |
|
19 |
18
|
ad2antll |
|
20 |
|
pw2eng |
|
21 |
|
ensym |
|
22 |
19 20 21
|
3syl |
|
23 |
22
|
adantr |
|
24 |
|
domentr |
|
25 |
16 23 24
|
syl2anc |
|
26 |
|
onfin2 |
|
27 |
|
inss2 |
|
28 |
26 27
|
eqsstri |
|
29 |
|
2onn |
|
30 |
28 29
|
sselii |
|
31 |
|
simprl |
|
32 |
17
|
brrelex1i |
|
33 |
31 32
|
syl |
|
34 |
|
fidomtri |
|
35 |
30 33 34
|
sylancr |
|
36 |
35
|
biimpar |
|
37 |
|
numth3 |
|
38 |
19 37
|
syl |
|
39 |
38
|
adantr |
|
40 |
|
nnenom |
|
41 |
40
|
ensymi |
|
42 |
|
endomtr |
|
43 |
41 4 42
|
sylancr |
|
44 |
43
|
adantr |
|
45 |
|
simpr |
|
46 |
31
|
adantr |
|
47 |
|
mappwen |
|
48 |
39 44 45 46 47
|
syl22anc |
|
49 |
|
endom |
|
50 |
48 49
|
syl |
|
51 |
36 50
|
syldan |
|
52 |
25 51
|
pm2.61dan |
|
53 |
|
domtr |
|
54 |
12 52 53
|
syl2anc |
|
55 |
|
domtr |
|
56 |
3 54 55
|
syl2anc |
|