Metamath Proof Explorer


Theorem hauspwdom

Description: Simplify the cardinal A ^ NN of hausmapdom to ~P B = 2 ^ B when B is an infinite cardinal greater than A . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypothesis hauspwdom.1 X = J
Assertion hauspwdom J Haus J 1 st 𝜔 A X A 𝒫 B B cls J A 𝒫 B

Proof

Step Hyp Ref Expression
1 hauspwdom.1 X = J
2 1 hausmapdom J Haus J 1 st 𝜔 A X cls J A A
3 2 adantr J Haus J 1 st 𝜔 A X A 𝒫 B B cls J A A
4 simprr J Haus J 1 st 𝜔 A X A 𝒫 B B B
5 1nn 1
6 noel ¬ 1
7 eleq2 = 1 1
8 6 7 mtbiri = ¬ 1
9 8 adantr = A = ¬ 1
10 5 9 mt2 ¬ = A =
11 mapdom2 B ¬ = A = A A B
12 4 10 11 sylancl J Haus J 1 st 𝜔 A X A 𝒫 B B A A B
13 sdomdom A 2 𝑜 A 2 𝑜
14 13 adantl J Haus J 1 st 𝜔 A X A 𝒫 B B A 2 𝑜 A 2 𝑜
15 mapdom1 A 2 𝑜 A B 2 𝑜 B
16 14 15 syl J Haus J 1 st 𝜔 A X A 𝒫 B B A 2 𝑜 A B 2 𝑜 B
17 reldom Rel
18 17 brrelex2i B B V
19 18 ad2antll J Haus J 1 st 𝜔 A X A 𝒫 B B B V
20 pw2eng B V 𝒫 B 2 𝑜 B
21 ensym 𝒫 B 2 𝑜 B 2 𝑜 B 𝒫 B
22 19 20 21 3syl J Haus J 1 st 𝜔 A X A 𝒫 B B 2 𝑜 B 𝒫 B
23 22 adantr J Haus J 1 st 𝜔 A X A 𝒫 B B A 2 𝑜 2 𝑜 B 𝒫 B
24 domentr A B 2 𝑜 B 2 𝑜 B 𝒫 B A B 𝒫 B
25 16 23 24 syl2anc J Haus J 1 st 𝜔 A X A 𝒫 B B A 2 𝑜 A B 𝒫 B
26 onfin2 ω = On Fin
27 inss2 On Fin Fin
28 26 27 eqsstri ω Fin
29 2onn 2 𝑜 ω
30 28 29 sselii 2 𝑜 Fin
31 simprl J Haus J 1 st 𝜔 A X A 𝒫 B B A 𝒫 B
32 17 brrelex1i A 𝒫 B A V
33 31 32 syl J Haus J 1 st 𝜔 A X A 𝒫 B B A V
34 fidomtri 2 𝑜 Fin A V 2 𝑜 A ¬ A 2 𝑜
35 30 33 34 sylancr J Haus J 1 st 𝜔 A X A 𝒫 B B 2 𝑜 A ¬ A 2 𝑜
36 35 biimpar J Haus J 1 st 𝜔 A X A 𝒫 B B ¬ A 2 𝑜 2 𝑜 A
37 numth3 B V B dom card
38 19 37 syl J Haus J 1 st 𝜔 A X A 𝒫 B B B dom card
39 38 adantr J Haus J 1 st 𝜔 A X A 𝒫 B B 2 𝑜 A B dom card
40 nnenom ω
41 40 ensymi ω
42 endomtr ω B ω B
43 41 4 42 sylancr J Haus J 1 st 𝜔 A X A 𝒫 B B ω B
44 43 adantr J Haus J 1 st 𝜔 A X A 𝒫 B B 2 𝑜 A ω B
45 simpr J Haus J 1 st 𝜔 A X A 𝒫 B B 2 𝑜 A 2 𝑜 A
46 31 adantr J Haus J 1 st 𝜔 A X A 𝒫 B B 2 𝑜 A A 𝒫 B
47 mappwen B dom card ω B 2 𝑜 A A 𝒫 B A B 𝒫 B
48 39 44 45 46 47 syl22anc J Haus J 1 st 𝜔 A X A 𝒫 B B 2 𝑜 A A B 𝒫 B
49 endom A B 𝒫 B A B 𝒫 B
50 48 49 syl J Haus J 1 st 𝜔 A X A 𝒫 B B 2 𝑜 A A B 𝒫 B
51 36 50 syldan J Haus J 1 st 𝜔 A X A 𝒫 B B ¬ A 2 𝑜 A B 𝒫 B
52 25 51 pm2.61dan J Haus J 1 st 𝜔 A X A 𝒫 B B A B 𝒫 B
53 domtr A A B A B 𝒫 B A 𝒫 B
54 12 52 53 syl2anc J Haus J 1 st 𝜔 A X A 𝒫 B B A 𝒫 B
55 domtr cls J A A A 𝒫 B cls J A 𝒫 B
56 3 54 55 syl2anc J Haus J 1 st 𝜔 A X A 𝒫 B B cls J A 𝒫 B