Metamath Proof Explorer


Theorem hauspwpwdom

Description: If X is a Hausdorff space, then the cardinality of the closure of a set A is bounded by the double powerset of A . In particular, a Hausdorff space with a dense subset A has cardinality at most ~P ~P A , and a separable Hausdorff space has cardinality at most ~P ~P NN . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Mario Carneiro, 28-Jul-2015)

Ref Expression
Hypothesis hauspwpwf1.x X = J
Assertion hauspwpwdom J Haus A X cls J A 𝒫 𝒫 A

Proof

Step Hyp Ref Expression
1 hauspwpwf1.x X = J
2 fvexd J Haus A X cls J A V
3 haustop J Haus J Top
4 1 topopn J Top X J
5 3 4 syl J Haus X J
6 5 adantr J Haus A X X J
7 simpr J Haus A X A X
8 6 7 ssexd J Haus A X A V
9 pwexg A V 𝒫 A V
10 pwexg 𝒫 A V 𝒫 𝒫 A V
11 8 9 10 3syl J Haus A X 𝒫 𝒫 A V
12 eqid x cls J A z | y J x y z = y A = x cls J A z | y J x y z = y A
13 1 12 hauspwpwf1 J Haus A X x cls J A z | y J x y z = y A : cls J A 1-1 𝒫 𝒫 A
14 f1dom2g cls J A V 𝒫 𝒫 A V x cls J A z | y J x y z = y A : cls J A 1-1 𝒫 𝒫 A cls J A 𝒫 𝒫 A
15 2 11 13 14 syl3anc J Haus A X cls J A 𝒫 𝒫 A