Database
BASIC TOPOLOGY
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
haustop
Next ⟩
isreg
Metamath Proof Explorer
Ascii
Unicode
Theorem
haustop
Description:
A Hausdorff space is a topology.
(Contributed by
NM
, 5-Mar-2007)
Ref
Expression
Assertion
haustop
⊢
J
∈
Haus
→
J
∈
Top
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
⋃
J
=
⋃
J
2
1
ishaus
⊢
J
∈
Haus
↔
J
∈
Top
∧
∀
x
∈
⋃
J
∀
y
∈
⋃
J
x
≠
y
→
∃
n
∈
J
∃
m
∈
J
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
3
2
simplbi
⊢
J
∈
Haus
→
J
∈
Top