Metamath Proof Explorer


Theorem hb3an

Description: If x is not free in ph , ps , and ch , it is not free in ( ph /\ ps /\ ch ) . (Contributed by NM, 14-Sep-2003) (Proof shortened by Wolf Lammen, 2-Jan-2018)

Ref Expression
Hypotheses hb.1 φ x φ
hb.2 ψ x ψ
hb.3 χ x χ
Assertion hb3an φ ψ χ x φ ψ χ

Proof

Step Hyp Ref Expression
1 hb.1 φ x φ
2 hb.2 ψ x ψ
3 hb.3 χ x χ
4 1 nf5i x φ
5 2 nf5i x ψ
6 3 nf5i x χ
7 4 5 6 nf3an x φ ψ χ
8 7 nf5ri φ ψ χ x φ ψ χ