Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
hb3an
Metamath Proof Explorer
Description: If x is not free in ph , ps , and ch , it is not free in
( ph /\ ps /\ ch ) . (Contributed by NM , 14-Sep-2003) (Proof
shortened by Wolf Lammen , 2-Jan-2018)
Ref
Expression
Hypotheses
hb.1
⊢ φ → ∀ x φ
hb.2
⊢ ψ → ∀ x ψ
hb.3
⊢ χ → ∀ x χ
Assertion
hb3an
⊢ φ ∧ ψ ∧ χ → ∀ x φ ∧ ψ ∧ χ
Proof
Step
Hyp
Ref
Expression
1
hb.1
⊢ φ → ∀ x φ
2
hb.2
⊢ ψ → ∀ x ψ
3
hb.3
⊢ χ → ∀ x χ
4
1
nf5i
⊢ Ⅎ x φ
5
2
nf5i
⊢ Ⅎ x ψ
6
3
nf5i
⊢ Ⅎ x χ
7
4 5 6
nf3an
⊢ Ⅎ x φ ∧ ψ ∧ χ
8
7
nf5ri
⊢ φ ∧ ψ ∧ χ → ∀ x φ ∧ ψ ∧ χ