Metamath Proof Explorer


Theorem hba1-o

Description: The setvar x is not free in A. x ph . Example in Appendix in Megill p. 450 (p. 19 of the preprint). Also Lemma 22 of Monk2 p. 114. (Contributed by NM, 24-Jan-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion hba1-o x φ x x φ

Proof

Step Hyp Ref Expression
1 ax-c5 x ¬ x φ ¬ x φ
2 1 con2i x φ ¬ x ¬ x φ
3 ax10fromc7 ¬ x ¬ x φ x ¬ x ¬ x φ
4 ax10fromc7 ¬ x φ x ¬ x φ
5 4 con1i ¬ x ¬ x φ x φ
6 5 alimi x ¬ x ¬ x φ x x φ
7 2 3 6 3syl x φ x x φ