Metamath Proof Explorer


Theorem hba1w

Description: Weak version of hba1 . See comments for ax10w . Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017) (Proof shortened by Wolf Lammen, 10-Oct-2021)

Ref Expression
Hypothesis hbn1w.1 x = y φ ψ
Assertion hba1w x φ x x φ

Proof

Step Hyp Ref Expression
1 hbn1w.1 x = y φ ψ
2 1 cbvalvw x φ y ψ
3 2 notbii ¬ x φ ¬ y ψ
4 3 a1i x = y ¬ x φ ¬ y ψ
5 4 spw x ¬ x φ ¬ x φ
6 5 con2i x φ ¬ x ¬ x φ
7 4 hbn1w ¬ x ¬ x φ x ¬ x ¬ x φ
8 1 hbn1w ¬ x φ x ¬ x φ
9 8 con1i ¬ x ¬ x φ x φ
10 9 alimi x ¬ x ¬ x φ x x φ
11 6 7 10 3syl x φ x x φ