Metamath Proof Explorer


Theorem hbab

Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995) Add disjoint variable condition to avoid ax-13 . See hbabg for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024)

Ref Expression
Hypothesis hbab.1 φxφ
Assertion hbab zy|φxzy|φ

Proof

Step Hyp Ref Expression
1 hbab.1 φxφ
2 df-clab zy|φzyφ
3 1 hbsbw zyφxzyφ
4 2 3 hbxfrbi zy|φxzy|φ