Metamath Proof Explorer


Theorem hbab

Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995) Add disjoint variable condition to avoid ax-13 . See hbabg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis hbab.1 φ x φ
Assertion hbab z y | φ x z y | φ

Proof

Step Hyp Ref Expression
1 hbab.1 φ x φ
2 df-clab z y | φ z y φ
3 1 hbsbw z y φ x z y φ
4 2 3 hbxfrbi z y | φ x z y | φ