Metamath Proof Explorer


Theorem hbae

Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker hbaev when possible. (Contributed by NM, 13-May-1993) (Proof shortened by Wolf Lammen, 21-Apr-2018) (New usage is discouraged.)

Ref Expression
Assertion hbae x x = y z x x = y

Proof

Step Hyp Ref Expression
1 sp x x = y x = y
2 axc9 ¬ z z = x ¬ z z = y x = y z x = y
3 1 2 syl7 ¬ z z = x ¬ z z = y x x = y z x = y
4 axc11r z z = x x x = y z x = y
5 axc11 x x = y x x = y y x = y
6 5 pm2.43i x x = y y x = y
7 axc11r z z = y y x = y z x = y
8 6 7 syl5 z z = y x x = y z x = y
9 3 4 8 pm2.61ii x x = y z x = y
10 9 axc4i x x = y x z x = y
11 ax-11 x z x = y z x x = y
12 10 11 syl x x = y z x x = y