Metamath Proof Explorer


Theorem hbae-o

Description: All variables are effectively bound in an identical variable specifier. Version of hbae using ax-c11 . (Contributed by NM, 13-May-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion hbae-o x x = y z x x = y

Proof

Step Hyp Ref Expression
1 ax-c5 x x = y x = y
2 ax-c9 ¬ z z = x ¬ z z = y x = y z x = y
3 1 2 syl7 ¬ z z = x ¬ z z = y x x = y z x = y
4 ax-c11 x x = z x x = y z x = y
5 4 aecoms-o z z = x x x = y z x = y
6 ax-c11 x x = y x x = y y x = y
7 6 pm2.43i x x = y y x = y
8 ax-c11 y y = z y x = y z x = y
9 7 8 syl5 y y = z x x = y z x = y
10 9 aecoms-o z z = y x x = y z x = y
11 3 5 10 pm2.61ii x x = y z x = y
12 11 axc4i-o x x = y x z x = y
13 ax-11 x z x = y z x x = y
14 12 13 syl x x = y z x x = y