Metamath Proof Explorer


Theorem hbal

Description: If x is not free in ph , it is not free in A. y ph . (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypothesis hbal.1 φ x φ
Assertion hbal y φ x y φ

Proof

Step Hyp Ref Expression
1 hbal.1 φ x φ
2 1 alimi y φ y x φ
3 ax-11 y x φ x y φ
4 2 3 syl y φ x y φ