Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Hypothesis builders
hbaltg
Next ⟩
hbng
Metamath Proof Explorer
Ascii
Unicode
Theorem
hbaltg
Description:
A more general and closed form of
hbal
.
(Contributed by
Scott Fenton
, 13-Dec-2010)
Ref
Expression
Assertion
hbaltg
⊢
∀
x
φ
→
∀
y
ψ
→
∀
x
φ
→
∀
y
∀
x
ψ
Proof
Step
Hyp
Ref
Expression
1
alim
⊢
∀
x
φ
→
∀
y
ψ
→
∀
x
φ
→
∀
x
∀
y
ψ
2
ax-11
⊢
∀
x
∀
y
ψ
→
∀
y
∀
x
ψ
3
1
2
syl6
⊢
∀
x
φ
→
∀
y
ψ
→
∀
x
φ
→
∀
y
∀
x
ψ