Metamath Proof Explorer


Theorem hbaltg

Description: A more general and closed form of hbal . (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Assertion hbaltg x φ y ψ x φ y x ψ

Proof

Step Hyp Ref Expression
1 alim x φ y ψ x φ x y ψ
2 ax-11 x y ψ y x ψ
3 1 2 syl6 x φ y ψ x φ y x ψ