Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
hban
Metamath Proof Explorer
Description: If x is not free in ph and ps , it is not free in
( ph /\ ps ) . (Contributed by NM , 14-May-1993) (Proof shortened by Wolf Lammen , 2-Jan-2018)
Ref
Expression
Hypotheses
hb.1
⊢ φ → ∀ x φ
hb.2
⊢ ψ → ∀ x ψ
Assertion
hban
⊢ φ ∧ ψ → ∀ x φ ∧ ψ
Proof
Step
Hyp
Ref
Expression
1
hb.1
⊢ φ → ∀ x φ
2
hb.2
⊢ ψ → ∀ x ψ
3
1
nf5i
⊢ Ⅎ x φ
4
2
nf5i
⊢ Ⅎ x ψ
5
3 4
nfan
⊢ Ⅎ x φ ∧ ψ
6
5
nf5ri
⊢ φ ∧ ψ → ∀ x φ ∧ ψ