Metamath Proof Explorer


Theorem hban

Description: If x is not free in ph and ps , it is not free in ( ph /\ ps ) . (Contributed by NM, 14-May-1993) (Proof shortened by Wolf Lammen, 2-Jan-2018)

Ref Expression
Hypotheses hb.1 φ x φ
hb.2 ψ x ψ
Assertion hban φ ψ x φ ψ

Proof

Step Hyp Ref Expression
1 hb.1 φ x φ
2 hb.2 ψ x ψ
3 1 nf5i x φ
4 2 nf5i x ψ
5 3 4 nfan x φ ψ
6 5 nf5ri φ ψ x φ ψ