Metamath Proof Explorer


Theorem hbe1a

Description: Dual statement of hbe1 . Modified version of axc7e with a universally quantified consequent. (Contributed by Wolf Lammen, 15-Sep-2021)

Ref Expression
Assertion hbe1a x x φ x φ

Proof

Step Hyp Ref Expression
1 df-ex x x φ ¬ x ¬ x φ
2 hbn1 ¬ x φ x ¬ x φ
3 2 con1i ¬ x ¬ x φ x φ
4 1 3 sylbi x x φ x φ