Metamath Proof Explorer


Theorem hbe1w

Description: Weak version of hbe1 . See comments for ax10w . Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017)

Ref Expression
Hypothesis hbn1w.1 x = y φ ψ
Assertion hbe1w x φ x x φ

Proof

Step Hyp Ref Expression
1 hbn1w.1 x = y φ ψ
2 df-ex x φ ¬ x ¬ φ
3 1 notbid x = y ¬ φ ¬ ψ
4 3 hbn1w ¬ x ¬ φ x ¬ x ¬ φ
5 2 4 hbxfrbi x φ x x φ