Metamath Proof Explorer


Theorem hbim

Description: If x is not free in ph and ps , it is not free in ( ph -> ps ) . (Contributed by NM, 24-Jan-1993) (Proof shortened by Mel L. O'Cat, 3-Mar-2008) (Proof shortened by Wolf Lammen, 1-Jan-2018)

Ref Expression
Hypotheses hbim.1 φ x φ
hbim.2 ψ x ψ
Assertion hbim φ ψ x φ ψ

Proof

Step Hyp Ref Expression
1 hbim.1 φ x φ
2 hbim.2 ψ x ψ
3 2 a1i φ ψ x ψ
4 1 3 hbim1 φ ψ x φ ψ