Metamath Proof Explorer


Theorem hbimg

Description: A more general form of hbim . (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Hypotheses hbg.1 φ x ψ
hbg.2 χ x θ
Assertion hbimg ψ χ x φ θ

Proof

Step Hyp Ref Expression
1 hbg.1 φ x ψ
2 hbg.2 χ x θ
3 1 ax-gen x φ x ψ
4 hbimtg x φ x ψ χ x θ ψ χ x φ θ
5 3 2 4 mp2an ψ χ x φ θ