Metamath Proof Explorer


Theorem hbimpg

Description: A closed form of hbim . Derived from hbimpgVD . (Contributed by Alan Sare, 8-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion hbimpg x φ x φ x ψ x ψ x φ ψ x φ ψ

Proof

Step Hyp Ref Expression
1 hba1 x φ x φ x x φ x φ
2 hba1 x ψ x ψ x x ψ x ψ
3 1 2 hban x φ x φ x ψ x ψ x x φ x φ x ψ x ψ
4 hbntal x φ x φ x ¬ φ x ¬ φ
5 4 adantr x φ x φ x ψ x ψ x ¬ φ x ¬ φ
6 5 19.21bi x φ x φ x ψ x ψ ¬ φ x ¬ φ
7 pm2.21 ¬ φ φ ψ
8 7 alimi x ¬ φ x φ ψ
9 6 8 syl6 x φ x φ x ψ x ψ ¬ φ x φ ψ
10 simpr x φ x φ x ψ x ψ x ψ x ψ
11 10 19.21bi x φ x φ x ψ x ψ ψ x ψ
12 ax-1 ψ φ ψ
13 12 alimi x ψ x φ ψ
14 11 13 syl6 x φ x φ x ψ x ψ ψ x φ ψ
15 9 14 jad x φ x φ x ψ x ψ φ ψ x φ ψ
16 3 15 alrimih x φ x φ x ψ x ψ x φ ψ x φ ψ