Description: A more general and closed form of hbim . (Contributed by Scott Fenton, 13-Dec-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | hbimtg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbntg | ||
2 | pm2.21 | ||
3 | 2 | alimi | |
4 | 1 3 | syl6 | |
5 | 4 | adantr | |
6 | ala1 | ||
7 | 6 | imim2i | |
8 | 7 | adantl | |
9 | 5 8 | jad |