Metamath Proof Explorer


Theorem hbimtg

Description: A more general and closed form of hbim . (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Assertion hbimtg x φ x χ ψ x θ χ ψ x φ θ

Proof

Step Hyp Ref Expression
1 hbntg x φ x χ ¬ χ x ¬ φ
2 pm2.21 ¬ φ φ θ
3 2 alimi x ¬ φ x φ θ
4 1 3 syl6 x φ x χ ¬ χ x φ θ
5 4 adantr x φ x χ ψ x θ ¬ χ x φ θ
6 ala1 x θ x φ θ
7 6 imim2i ψ x θ ψ x φ θ
8 7 adantl x φ x χ ψ x θ ψ x φ θ
9 5 8 jad x φ x χ ψ x θ χ ψ x φ θ