Metamath Proof Explorer


Theorem hblem

Description: Change the free variable of a hypothesis builder. (Contributed by NM, 21-Jun-1993) (Revised by Andrew Salmon, 11-Jul-2011) Add disjoint variable condition to avoid ax-13 . See hblemg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis hblem.1 y A x y A
Assertion hblem z A x z A

Proof

Step Hyp Ref Expression
1 hblem.1 y A x y A
2 1 hbsbw z y y A x z y y A
3 clelsb1 z y y A z A
4 3 albii x z y y A x z A
5 2 3 4 3imtr3i z A x z A