Metamath Proof Explorer


Theorem hbn1fw

Description: Weak version of ax-10 from which we can prove any ax-10 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 28-Feb-2018)

Ref Expression
Hypotheses hbn1fw.1 x φ y x φ
hbn1fw.2 ¬ ψ x ¬ ψ
hbn1fw.3 y ψ x y ψ
hbn1fw.4 ¬ φ y ¬ φ
hbn1fw.5 ¬ y ψ x ¬ y ψ
hbn1fw.6 x = y φ ψ
Assertion hbn1fw ¬ x φ x ¬ x φ

Proof

Step Hyp Ref Expression
1 hbn1fw.1 x φ y x φ
2 hbn1fw.2 ¬ ψ x ¬ ψ
3 hbn1fw.3 y ψ x y ψ
4 hbn1fw.4 ¬ φ y ¬ φ
5 hbn1fw.5 ¬ y ψ x ¬ y ψ
6 hbn1fw.6 x = y φ ψ
7 1 2 3 4 6 cbvalw x φ y ψ
8 7 notbii ¬ x φ ¬ y ψ
9 8 5 hbxfrbi ¬ x φ x ¬ x φ