Metamath Proof Explorer


Theorem hbn1w

Description: Weak version of hbn1 . Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017)

Ref Expression
Hypothesis hbn1w.1 x = y φ ψ
Assertion hbn1w ¬ x φ x ¬ x φ

Proof

Step Hyp Ref Expression
1 hbn1w.1 x = y φ ψ
2 ax-5 x φ y x φ
3 ax-5 ¬ ψ x ¬ ψ
4 ax-5 y ψ x y ψ
5 ax-5 ¬ φ y ¬ φ
6 ax-5 ¬ y ψ x ¬ y ψ
7 2 3 4 5 6 1 hbn1fw ¬ x φ x ¬ x φ