Metamath Proof Explorer


Theorem hbng

Description: A more general form of hbn . (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Hypothesis hbg.1 φ x ψ
Assertion hbng ¬ ψ x ¬ φ

Proof

Step Hyp Ref Expression
1 hbg.1 φ x ψ
2 hbntg x φ x ψ ¬ ψ x ¬ φ
3 2 1 mpg ¬ ψ x ¬ φ