Metamath Proof Explorer


Theorem hbntal

Description: A closed form of hbn . hbnt is another closed form of hbn . (Contributed by Alan Sare, 8-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion hbntal x φ x φ x ¬ φ x ¬ φ

Proof

Step Hyp Ref Expression
1 hba1 x φ x φ x x φ x φ
2 axc7 ¬ x ¬ x φ φ
3 2 con1i ¬ φ x ¬ x φ
4 con3 φ x φ ¬ x φ ¬ φ
5 4 al2imi x φ x φ x ¬ x φ x ¬ φ
6 3 5 syl5 x φ x φ ¬ φ x ¬ φ
7 6 alimi x x φ x φ x ¬ φ x ¬ φ
8 1 7 syl x φ x φ x ¬ φ x ¬ φ