Metamath Proof Explorer


Theorem hbntg

Description: A more general form of hbnt . (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Assertion hbntg x φ x ψ ¬ ψ x ¬ φ

Proof

Step Hyp Ref Expression
1 axc7 ¬ x ¬ x ψ ψ
2 1 con1i ¬ ψ x ¬ x ψ
3 con3 φ x ψ ¬ x ψ ¬ φ
4 3 al2imi x φ x ψ x ¬ x ψ x ¬ φ
5 2 4 syl5 x φ x ψ ¬ ψ x ¬ φ