Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Hypothesis builders
hbntg
Next ⟩
hbimtg
Metamath Proof Explorer
Ascii
Unicode
Theorem
hbntg
Description:
A more general form of
hbnt
.
(Contributed by
Scott Fenton
, 13-Dec-2010)
Ref
Expression
Assertion
hbntg
⊢
∀
x
φ
→
∀
x
ψ
→
¬
ψ
→
∀
x
¬
φ
Proof
Step
Hyp
Ref
Expression
1
axc7
⊢
¬
∀
x
¬
∀
x
ψ
→
ψ
2
1
con1i
⊢
¬
ψ
→
∀
x
¬
∀
x
ψ
3
con3
⊢
φ
→
∀
x
ψ
→
¬
∀
x
ψ
→
¬
φ
4
3
al2imi
⊢
∀
x
φ
→
∀
x
ψ
→
∀
x
¬
∀
x
ψ
→
∀
x
¬
φ
5
2
4
syl5
⊢
∀
x
φ
→
∀
x
ψ
→
¬
ψ
→
∀
x
¬
φ