Metamath Proof Explorer


Theorem hbsb2

Description: Bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 14-May-1993) (New usage is discouraged.)

Ref Expression
Assertion hbsb2 ¬ x x = y y x φ x y x φ

Proof

Step Hyp Ref Expression
1 sb4b ¬ x x = y y x φ x x = y φ
2 sb2 x x = y φ y x φ
3 2 axc4i x x = y φ x y x φ
4 1 3 syl6bi ¬ x x = y y x φ x y x φ