Metamath Proof Explorer


Theorem hbsb2a

Description: Special case of a bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Feb-2007) (New usage is discouraged.)

Ref Expression
Assertion hbsb2a y x y φ x y x φ

Proof

Step Hyp Ref Expression
1 sb4a y x y φ x x = y φ
2 sb2 x x = y φ y x φ
3 2 axc4i x x = y φ x y x φ
4 1 3 syl y x y φ x y x φ