Metamath Proof Explorer


Theorem hbsbw

Description: If z is not free in ph , it is not free in [ y / x ] ph when y and z are distinct. Version of hbsb with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 12-Aug-1993) (Revised by Gino Giotto, 23-May-2024) (Proof shortened by Wolf Lammen, 14-May-2025)

Ref Expression
Hypothesis hbsbw.1 φ z φ
Assertion hbsbw y x φ z y x φ

Proof

Step Hyp Ref Expression
1 hbsbw.1 φ z φ
2 1 sbimi y x φ y x z φ
3 sbal y x z φ z y x φ
4 2 3 sylib y x φ z y x φ