Metamath Proof Explorer


Theorem hbsbw

Description: If z is not free in ph , it is not free in [ y / x ] ph when y and z are distinct. Version of hbsb with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 12-Aug-1993) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypothesis hbsbw.1 φ z φ
Assertion hbsbw y x φ z y x φ

Proof

Step Hyp Ref Expression
1 hbsbw.1 φ z φ
2 df-sb y x φ w w = y x x = w φ
3 1 imim2i x = w φ x = w z φ
4 3 alimi x x = w φ x x = w z φ
5 19.21v z x = w φ x = w z φ
6 5 biimpri x = w z φ z x = w φ
7 6 alimi x x = w z φ x z x = w φ
8 ax-11 x z x = w φ z x x = w φ
9 4 7 8 3syl x x = w φ z x x = w φ
10 9 imim2i w = y x x = w φ w = y z x x = w φ
11 19.21v z w = y x x = w φ w = y z x x = w φ
12 10 11 sylibr w = y x x = w φ z w = y x x = w φ
13 12 hbal w w = y x x = w φ z w w = y x x = w φ
14 2 13 hbxfrbi y x φ z y x φ