Metamath Proof Explorer


Theorem hbtlem1

Description: Value of the leading coefficient sequence function. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Hypotheses hbtlem.p P = Poly 1 R
hbtlem.u U = LIdeal P
hbtlem.s S = ldgIdlSeq R
hbtlem.d D = deg 1 R
Assertion hbtlem1 R V I U X 0 S I X = j | k I D k X j = coe 1 k X

Proof

Step Hyp Ref Expression
1 hbtlem.p P = Poly 1 R
2 hbtlem.u U = LIdeal P
3 hbtlem.s S = ldgIdlSeq R
4 hbtlem.d D = deg 1 R
5 elex R V R V
6 fveq2 r = R Poly 1 r = Poly 1 R
7 6 1 eqtr4di r = R Poly 1 r = P
8 7 fveq2d r = R LIdeal Poly 1 r = LIdeal P
9 8 2 eqtr4di r = R LIdeal Poly 1 r = U
10 fveq2 r = R deg 1 r = deg 1 R
11 10 4 eqtr4di r = R deg 1 r = D
12 11 fveq1d r = R deg 1 r k = D k
13 12 breq1d r = R deg 1 r k x D k x
14 13 anbi1d r = R deg 1 r k x j = coe 1 k x D k x j = coe 1 k x
15 14 rexbidv r = R k i deg 1 r k x j = coe 1 k x k i D k x j = coe 1 k x
16 15 abbidv r = R j | k i deg 1 r k x j = coe 1 k x = j | k i D k x j = coe 1 k x
17 16 mpteq2dv r = R x 0 j | k i deg 1 r k x j = coe 1 k x = x 0 j | k i D k x j = coe 1 k x
18 9 17 mpteq12dv r = R i LIdeal Poly 1 r x 0 j | k i deg 1 r k x j = coe 1 k x = i U x 0 j | k i D k x j = coe 1 k x
19 df-ldgis ldgIdlSeq = r V i LIdeal Poly 1 r x 0 j | k i deg 1 r k x j = coe 1 k x
20 18 19 2 mptfvmpt R V ldgIdlSeq R = i U x 0 j | k i D k x j = coe 1 k x
21 5 20 syl R V ldgIdlSeq R = i U x 0 j | k i D k x j = coe 1 k x
22 3 21 syl5eq R V S = i U x 0 j | k i D k x j = coe 1 k x
23 22 fveq1d R V S I = i U x 0 j | k i D k x j = coe 1 k x I
24 23 fveq1d R V S I X = i U x 0 j | k i D k x j = coe 1 k x I X
25 24 3ad2ant1 R V I U X 0 S I X = i U x 0 j | k i D k x j = coe 1 k x I X
26 rexeq i = I k i D k x j = coe 1 k x k I D k x j = coe 1 k x
27 26 abbidv i = I j | k i D k x j = coe 1 k x = j | k I D k x j = coe 1 k x
28 27 mpteq2dv i = I x 0 j | k i D k x j = coe 1 k x = x 0 j | k I D k x j = coe 1 k x
29 eqid i U x 0 j | k i D k x j = coe 1 k x = i U x 0 j | k i D k x j = coe 1 k x
30 nn0ex 0 V
31 30 mptex x 0 j | k I D k x j = coe 1 k x V
32 28 29 31 fvmpt I U i U x 0 j | k i D k x j = coe 1 k x I = x 0 j | k I D k x j = coe 1 k x
33 32 fveq1d I U i U x 0 j | k i D k x j = coe 1 k x I X = x 0 j | k I D k x j = coe 1 k x X
34 33 3ad2ant2 R V I U X 0 i U x 0 j | k i D k x j = coe 1 k x I X = x 0 j | k I D k x j = coe 1 k x X
35 eqid x 0 j | k I D k x j = coe 1 k x = x 0 j | k I D k x j = coe 1 k x
36 breq2 x = X D k x D k X
37 fveq2 x = X coe 1 k x = coe 1 k X
38 37 eqeq2d x = X j = coe 1 k x j = coe 1 k X
39 36 38 anbi12d x = X D k x j = coe 1 k x D k X j = coe 1 k X
40 39 rexbidv x = X k I D k x j = coe 1 k x k I D k X j = coe 1 k X
41 40 abbidv x = X j | k I D k x j = coe 1 k x = j | k I D k X j = coe 1 k X
42 simp3 R V I U X 0 X 0
43 simpr D k X j = coe 1 k X j = coe 1 k X
44 43 reximi k I D k X j = coe 1 k X k I j = coe 1 k X
45 44 ss2abi j | k I D k X j = coe 1 k X j | k I j = coe 1 k X
46 abrexexg I U j | k I j = coe 1 k X V
47 46 3ad2ant2 R V I U X 0 j | k I j = coe 1 k X V
48 ssexg j | k I D k X j = coe 1 k X j | k I j = coe 1 k X j | k I j = coe 1 k X V j | k I D k X j = coe 1 k X V
49 45 47 48 sylancr R V I U X 0 j | k I D k X j = coe 1 k X V
50 35 41 42 49 fvmptd3 R V I U X 0 x 0 j | k I D k x j = coe 1 k x X = j | k I D k X j = coe 1 k X
51 25 34 50 3eqtrd R V I U X 0 S I X = j | k I D k X j = coe 1 k X