Step |
Hyp |
Ref |
Expression |
1 |
|
hbtlem.p |
|
2 |
|
hbtlem.u |
|
3 |
|
hbtlem.s |
|
4 |
|
hbtlem2.t |
|
5 |
|
eqid |
|
6 |
1 2 3 5
|
hbtlem1 |
|
7 |
|
eqid |
|
8 |
7 2
|
lidlss |
|
9 |
8
|
3ad2ant2 |
|
10 |
9
|
sselda |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
11 7 1 12
|
coe1f |
|
14 |
10 13
|
syl |
|
15 |
|
simpl3 |
|
16 |
14 15
|
ffvelrnd |
|
17 |
|
eleq1a |
|
18 |
16 17
|
syl |
|
19 |
18
|
adantld |
|
20 |
19
|
rexlimdva |
|
21 |
20
|
abssdv |
|
22 |
1
|
ply1ring |
|
23 |
22
|
3ad2ant1 |
|
24 |
|
simp2 |
|
25 |
|
eqid |
|
26 |
2 25
|
lidl0cl |
|
27 |
23 24 26
|
syl2anc |
|
28 |
5 1 25
|
deg1z |
|
29 |
28
|
3ad2ant1 |
|
30 |
|
nn0ssre |
|
31 |
|
ressxr |
|
32 |
30 31
|
sstri |
|
33 |
|
simp3 |
|
34 |
32 33
|
sselid |
|
35 |
|
mnfle |
|
36 |
34 35
|
syl |
|
37 |
29 36
|
eqbrtrd |
|
38 |
|
eqid |
|
39 |
1 25 38
|
coe1z |
|
40 |
39
|
3ad2ant1 |
|
41 |
40
|
fveq1d |
|
42 |
|
fvex |
|
43 |
42
|
fvconst2 |
|
44 |
43
|
3ad2ant3 |
|
45 |
41 44
|
eqtr2d |
|
46 |
|
fveq2 |
|
47 |
46
|
breq1d |
|
48 |
|
fveq2 |
|
49 |
48
|
fveq1d |
|
50 |
49
|
eqeq2d |
|
51 |
47 50
|
anbi12d |
|
52 |
51
|
rspcev |
|
53 |
27 37 45 52
|
syl12anc |
|
54 |
|
eqeq1 |
|
55 |
54
|
anbi2d |
|
56 |
55
|
rexbidv |
|
57 |
42 56
|
elab |
|
58 |
53 57
|
sylibr |
|
59 |
58
|
ne0d |
|
60 |
23
|
adantr |
|
61 |
|
simpl2 |
|
62 |
|
eqid |
|
63 |
1 62 12 7
|
ply1sclf |
|
64 |
63
|
3ad2ant1 |
|
65 |
64
|
adantr |
|
66 |
|
simprl |
|
67 |
65 66
|
ffvelrnd |
|
68 |
|
simprll |
|
69 |
68
|
adantl |
|
70 |
|
eqid |
|
71 |
2 7 70
|
lidlmcl |
|
72 |
60 61 67 69 71
|
syl22anc |
|
73 |
|
simprrl |
|
74 |
73
|
adantl |
|
75 |
|
eqid |
|
76 |
2 75
|
lidlacl |
|
77 |
60 61 72 74 76
|
syl22anc |
|
78 |
|
simpl1 |
|
79 |
9
|
adantr |
|
80 |
79 69
|
sseldd |
|
81 |
7 70
|
ringcl |
|
82 |
60 67 80 81
|
syl3anc |
|
83 |
79 74
|
sseldd |
|
84 |
|
simpl3 |
|
85 |
32 84
|
sselid |
|
86 |
5 1 7
|
deg1xrcl |
|
87 |
82 86
|
syl |
|
88 |
5 1 7
|
deg1xrcl |
|
89 |
80 88
|
syl |
|
90 |
5 1 12 7 70 62
|
deg1mul3le |
|
91 |
78 66 80 90
|
syl3anc |
|
92 |
|
simprlr |
|
93 |
92
|
adantl |
|
94 |
87 89 85 91 93
|
xrletrd |
|
95 |
|
simprrr |
|
96 |
95
|
adantl |
|
97 |
1 5 78 7 75 82 83 85 94 96
|
deg1addle2 |
|
98 |
|
eqid |
|
99 |
1 7 75 98
|
coe1addfv |
|
100 |
78 82 83 84 99
|
syl31anc |
|
101 |
|
eqid |
|
102 |
1 7 12 62 70 101
|
coe1sclmulfv |
|
103 |
78 66 80 84 102
|
syl121anc |
|
104 |
103
|
oveq1d |
|
105 |
100 104
|
eqtr2d |
|
106 |
|
fveq2 |
|
107 |
106
|
breq1d |
|
108 |
|
fveq2 |
|
109 |
108
|
fveq1d |
|
110 |
109
|
eqeq2d |
|
111 |
107 110
|
anbi12d |
|
112 |
111
|
rspcev |
|
113 |
77 97 105 112
|
syl12anc |
|
114 |
|
ovex |
|
115 |
|
eqeq1 |
|
116 |
115
|
anbi2d |
|
117 |
116
|
rexbidv |
|
118 |
114 117
|
elab |
|
119 |
113 118
|
sylibr |
|
120 |
119
|
exp45 |
|
121 |
120
|
imp |
|
122 |
121
|
exp5c |
|
123 |
122
|
imp |
|
124 |
123
|
imp41 |
|
125 |
|
oveq2 |
|
126 |
125
|
eleq1d |
|
127 |
124 126
|
syl5ibrcom |
|
128 |
127
|
expimpd |
|
129 |
128
|
rexlimdva |
|
130 |
129
|
alrimiv |
|
131 |
|
eqeq1 |
|
132 |
131
|
anbi2d |
|
133 |
132
|
rexbidv |
|
134 |
|
fveq2 |
|
135 |
134
|
breq1d |
|
136 |
|
fveq2 |
|
137 |
136
|
fveq1d |
|
138 |
137
|
eqeq2d |
|
139 |
135 138
|
anbi12d |
|
140 |
139
|
cbvrexvw |
|
141 |
133 140
|
bitrdi |
|
142 |
141
|
ralab |
|
143 |
130 142
|
sylibr |
|
144 |
|
oveq2 |
|
145 |
144
|
oveq1d |
|
146 |
145
|
eleq1d |
|
147 |
146
|
ralbidv |
|
148 |
143 147
|
syl5ibrcom |
|
149 |
148
|
expimpd |
|
150 |
149
|
rexlimdva |
|
151 |
150
|
alrimiv |
|
152 |
|
eqeq1 |
|
153 |
152
|
anbi2d |
|
154 |
153
|
rexbidv |
|
155 |
|
fveq2 |
|
156 |
155
|
breq1d |
|
157 |
|
fveq2 |
|
158 |
157
|
fveq1d |
|
159 |
158
|
eqeq2d |
|
160 |
156 159
|
anbi12d |
|
161 |
160
|
cbvrexvw |
|
162 |
154 161
|
bitrdi |
|
163 |
162
|
ralab |
|
164 |
151 163
|
sylibr |
|
165 |
164
|
ralrimiva |
|
166 |
4 12 98 101
|
islidl |
|
167 |
21 59 165 166
|
syl3anbrc |
|
168 |
6 167
|
eqeltrd |
|