Metamath Proof Explorer


Theorem hbtlem4

Description: The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses hbtlem.p P = Poly 1 R
hbtlem.u U = LIdeal P
hbtlem.s S = ldgIdlSeq R
hbtlem4.r φ R Ring
hbtlem4.i φ I U
hbtlem4.x φ X 0
hbtlem4.y φ Y 0
hbtlem4.xy φ X Y
Assertion hbtlem4 φ S I X S I Y

Proof

Step Hyp Ref Expression
1 hbtlem.p P = Poly 1 R
2 hbtlem.u U = LIdeal P
3 hbtlem.s S = ldgIdlSeq R
4 hbtlem4.r φ R Ring
5 hbtlem4.i φ I U
6 hbtlem4.x φ X 0
7 hbtlem4.y φ Y 0
8 hbtlem4.xy φ X Y
9 4 ad2antrr φ c I deg 1 R c X R Ring
10 1 ply1ring R Ring P Ring
11 9 10 syl φ c I deg 1 R c X P Ring
12 5 ad2antrr φ c I deg 1 R c X I U
13 eqid mulGrp P = mulGrp P
14 13 ringmgp P Ring mulGrp P Mnd
15 11 14 syl φ c I deg 1 R c X mulGrp P Mnd
16 6 ad2antrr φ c I deg 1 R c X X 0
17 7 ad2antrr φ c I deg 1 R c X Y 0
18 8 ad2antrr φ c I deg 1 R c X X Y
19 nn0sub2 X 0 Y 0 X Y Y X 0
20 16 17 18 19 syl3anc φ c I deg 1 R c X Y X 0
21 eqid var 1 R = var 1 R
22 eqid Base P = Base P
23 21 1 22 vr1cl R Ring var 1 R Base P
24 9 23 syl φ c I deg 1 R c X var 1 R Base P
25 13 22 mgpbas Base P = Base mulGrp P
26 eqid mulGrp P = mulGrp P
27 25 26 mulgnn0cl mulGrp P Mnd Y X 0 var 1 R Base P Y X mulGrp P var 1 R Base P
28 15 20 24 27 syl3anc φ c I deg 1 R c X Y X mulGrp P var 1 R Base P
29 simplr φ c I deg 1 R c X c I
30 eqid P = P
31 2 22 30 lidlmcl P Ring I U Y X mulGrp P var 1 R Base P c I Y X mulGrp P var 1 R P c I
32 11 12 28 29 31 syl22anc φ c I deg 1 R c X Y X mulGrp P var 1 R P c I
33 eqid deg 1 R = deg 1 R
34 22 2 lidlss I U I Base P
35 12 34 syl φ c I deg 1 R c X I Base P
36 35 29 sseldd φ c I deg 1 R c X c Base P
37 33 1 21 13 26 deg1pwle R Ring Y X 0 deg 1 R Y X mulGrp P var 1 R Y X
38 9 20 37 syl2anc φ c I deg 1 R c X deg 1 R Y X mulGrp P var 1 R Y X
39 simpr φ c I deg 1 R c X deg 1 R c X
40 1 33 9 22 30 28 36 20 16 38 39 deg1mulle2 φ c I deg 1 R c X deg 1 R Y X mulGrp P var 1 R P c Y - X + X
41 17 nn0cnd φ c I deg 1 R c X Y
42 16 nn0cnd φ c I deg 1 R c X X
43 41 42 npcand φ c I deg 1 R c X Y - X + X = Y
44 40 43 breqtrd φ c I deg 1 R c X deg 1 R Y X mulGrp P var 1 R P c Y
45 eqid 0 R = 0 R
46 45 1 21 13 26 22 30 9 36 20 16 coe1pwmulfv φ c I deg 1 R c X coe 1 Y X mulGrp P var 1 R P c Y - X + X = coe 1 c X
47 43 fveq2d φ c I deg 1 R c X coe 1 Y X mulGrp P var 1 R P c Y - X + X = coe 1 Y X mulGrp P var 1 R P c Y
48 46 47 eqtr3d φ c I deg 1 R c X coe 1 c X = coe 1 Y X mulGrp P var 1 R P c Y
49 fveq2 b = Y X mulGrp P var 1 R P c deg 1 R b = deg 1 R Y X mulGrp P var 1 R P c
50 49 breq1d b = Y X mulGrp P var 1 R P c deg 1 R b Y deg 1 R Y X mulGrp P var 1 R P c Y
51 fveq2 b = Y X mulGrp P var 1 R P c coe 1 b = coe 1 Y X mulGrp P var 1 R P c
52 51 fveq1d b = Y X mulGrp P var 1 R P c coe 1 b Y = coe 1 Y X mulGrp P var 1 R P c Y
53 52 eqeq2d b = Y X mulGrp P var 1 R P c coe 1 c X = coe 1 b Y coe 1 c X = coe 1 Y X mulGrp P var 1 R P c Y
54 50 53 anbi12d b = Y X mulGrp P var 1 R P c deg 1 R b Y coe 1 c X = coe 1 b Y deg 1 R Y X mulGrp P var 1 R P c Y coe 1 c X = coe 1 Y X mulGrp P var 1 R P c Y
55 54 rspcev Y X mulGrp P var 1 R P c I deg 1 R Y X mulGrp P var 1 R P c Y coe 1 c X = coe 1 Y X mulGrp P var 1 R P c Y b I deg 1 R b Y coe 1 c X = coe 1 b Y
56 32 44 48 55 syl12anc φ c I deg 1 R c X b I deg 1 R b Y coe 1 c X = coe 1 b Y
57 eqeq1 a = coe 1 c X a = coe 1 b Y coe 1 c X = coe 1 b Y
58 57 anbi2d a = coe 1 c X deg 1 R b Y a = coe 1 b Y deg 1 R b Y coe 1 c X = coe 1 b Y
59 58 rexbidv a = coe 1 c X b I deg 1 R b Y a = coe 1 b Y b I deg 1 R b Y coe 1 c X = coe 1 b Y
60 56 59 syl5ibrcom φ c I deg 1 R c X a = coe 1 c X b I deg 1 R b Y a = coe 1 b Y
61 60 expimpd φ c I deg 1 R c X a = coe 1 c X b I deg 1 R b Y a = coe 1 b Y
62 61 rexlimdva φ c I deg 1 R c X a = coe 1 c X b I deg 1 R b Y a = coe 1 b Y
63 62 ss2abdv φ a | c I deg 1 R c X a = coe 1 c X a | b I deg 1 R b Y a = coe 1 b Y
64 1 2 3 33 hbtlem1 R Ring I U X 0 S I X = a | c I deg 1 R c X a = coe 1 c X
65 4 5 6 64 syl3anc φ S I X = a | c I deg 1 R c X a = coe 1 c X
66 1 2 3 33 hbtlem1 R Ring I U Y 0 S I Y = a | b I deg 1 R b Y a = coe 1 b Y
67 4 5 7 66 syl3anc φ S I Y = a | b I deg 1 R b Y a = coe 1 b Y
68 63 65 67 3sstr4d φ S I X S I Y