Step |
Hyp |
Ref |
Expression |
1 |
|
hbtlem.p |
|
2 |
|
hbtlem.u |
|
3 |
|
hbtlem.s |
|
4 |
|
hbtlem4.r |
|
5 |
|
hbtlem4.i |
|
6 |
|
hbtlem4.x |
|
7 |
|
hbtlem4.y |
|
8 |
|
hbtlem4.xy |
|
9 |
4
|
ad2antrr |
|
10 |
1
|
ply1ring |
|
11 |
9 10
|
syl |
|
12 |
5
|
ad2antrr |
|
13 |
|
eqid |
|
14 |
13
|
ringmgp |
|
15 |
11 14
|
syl |
|
16 |
6
|
ad2antrr |
|
17 |
7
|
ad2antrr |
|
18 |
8
|
ad2antrr |
|
19 |
|
nn0sub2 |
|
20 |
16 17 18 19
|
syl3anc |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
21 1 22
|
vr1cl |
|
24 |
9 23
|
syl |
|
25 |
13 22
|
mgpbas |
|
26 |
|
eqid |
|
27 |
25 26
|
mulgnn0cl |
|
28 |
15 20 24 27
|
syl3anc |
|
29 |
|
simplr |
|
30 |
|
eqid |
|
31 |
2 22 30
|
lidlmcl |
|
32 |
11 12 28 29 31
|
syl22anc |
|
33 |
|
eqid |
|
34 |
22 2
|
lidlss |
|
35 |
12 34
|
syl |
|
36 |
35 29
|
sseldd |
|
37 |
33 1 21 13 26
|
deg1pwle |
|
38 |
9 20 37
|
syl2anc |
|
39 |
|
simpr |
|
40 |
1 33 9 22 30 28 36 20 16 38 39
|
deg1mulle2 |
|
41 |
17
|
nn0cnd |
|
42 |
16
|
nn0cnd |
|
43 |
41 42
|
npcand |
|
44 |
40 43
|
breqtrd |
|
45 |
|
eqid |
|
46 |
45 1 21 13 26 22 30 9 36 20 16
|
coe1pwmulfv |
|
47 |
43
|
fveq2d |
|
48 |
46 47
|
eqtr3d |
|
49 |
|
fveq2 |
|
50 |
49
|
breq1d |
|
51 |
|
fveq2 |
|
52 |
51
|
fveq1d |
|
53 |
52
|
eqeq2d |
|
54 |
50 53
|
anbi12d |
|
55 |
54
|
rspcev |
|
56 |
32 44 48 55
|
syl12anc |
|
57 |
|
eqeq1 |
|
58 |
57
|
anbi2d |
|
59 |
58
|
rexbidv |
|
60 |
56 59
|
syl5ibrcom |
|
61 |
60
|
expimpd |
|
62 |
61
|
rexlimdva |
|
63 |
62
|
ss2abdv |
|
64 |
1 2 3 33
|
hbtlem1 |
|
65 |
4 5 6 64
|
syl3anc |
|
66 |
1 2 3 33
|
hbtlem1 |
|
67 |
4 5 7 66
|
syl3anc |
|
68 |
63 65 67
|
3sstr4d |
|