Metamath Proof Explorer


Theorem hbtlem4

Description: The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses hbtlem.p P = Poly 1 R
hbtlem.u U = LIdeal P
hbtlem.s S = ldgIdlSeq R
hbtlem4.r φ R Ring
hbtlem4.i φ I U
hbtlem4.x φ X 0
hbtlem4.y φ Y 0
hbtlem4.xy φ X Y
Assertion hbtlem4 φ S I X S I Y

Proof

Step Hyp Ref Expression
1 hbtlem.p P = Poly 1 R
2 hbtlem.u U = LIdeal P
3 hbtlem.s S = ldgIdlSeq R
4 hbtlem4.r φ R Ring
5 hbtlem4.i φ I U
6 hbtlem4.x φ X 0
7 hbtlem4.y φ Y 0
8 hbtlem4.xy φ X Y
9 4 ad2antrr φ c I deg 1 R c X R Ring
10 1 ply1ring R Ring P Ring
11 9 10 syl φ c I deg 1 R c X P Ring
12 5 ad2antrr φ c I deg 1 R c X I U
13 eqid mulGrp P = mulGrp P
14 eqid Base P = Base P
15 13 14 mgpbas Base P = Base mulGrp P
16 eqid mulGrp P = mulGrp P
17 13 ringmgp P Ring mulGrp P Mnd
18 11 17 syl φ c I deg 1 R c X mulGrp P Mnd
19 6 ad2antrr φ c I deg 1 R c X X 0
20 7 ad2antrr φ c I deg 1 R c X Y 0
21 8 ad2antrr φ c I deg 1 R c X X Y
22 nn0sub2 X 0 Y 0 X Y Y X 0
23 19 20 21 22 syl3anc φ c I deg 1 R c X Y X 0
24 eqid var 1 R = var 1 R
25 24 1 14 vr1cl R Ring var 1 R Base P
26 9 25 syl φ c I deg 1 R c X var 1 R Base P
27 15 16 18 23 26 mulgnn0cld φ c I deg 1 R c X Y X mulGrp P var 1 R Base P
28 simplr φ c I deg 1 R c X c I
29 eqid P = P
30 2 14 29 lidlmcl P Ring I U Y X mulGrp P var 1 R Base P c I Y X mulGrp P var 1 R P c I
31 11 12 27 28 30 syl22anc φ c I deg 1 R c X Y X mulGrp P var 1 R P c I
32 eqid deg 1 R = deg 1 R
33 14 2 lidlss I U I Base P
34 12 33 syl φ c I deg 1 R c X I Base P
35 34 28 sseldd φ c I deg 1 R c X c Base P
36 32 1 24 13 16 deg1pwle R Ring Y X 0 deg 1 R Y X mulGrp P var 1 R Y X
37 9 23 36 syl2anc φ c I deg 1 R c X deg 1 R Y X mulGrp P var 1 R Y X
38 simpr φ c I deg 1 R c X deg 1 R c X
39 1 32 9 14 29 27 35 23 19 37 38 deg1mulle2 φ c I deg 1 R c X deg 1 R Y X mulGrp P var 1 R P c Y - X + X
40 20 nn0cnd φ c I deg 1 R c X Y
41 19 nn0cnd φ c I deg 1 R c X X
42 40 41 npcand φ c I deg 1 R c X Y - X + X = Y
43 39 42 breqtrd φ c I deg 1 R c X deg 1 R Y X mulGrp P var 1 R P c Y
44 eqid 0 R = 0 R
45 44 1 24 13 16 14 29 9 35 23 19 coe1pwmulfv φ c I deg 1 R c X coe 1 Y X mulGrp P var 1 R P c Y - X + X = coe 1 c X
46 42 fveq2d φ c I deg 1 R c X coe 1 Y X mulGrp P var 1 R P c Y - X + X = coe 1 Y X mulGrp P var 1 R P c Y
47 45 46 eqtr3d φ c I deg 1 R c X coe 1 c X = coe 1 Y X mulGrp P var 1 R P c Y
48 fveq2 b = Y X mulGrp P var 1 R P c deg 1 R b = deg 1 R Y X mulGrp P var 1 R P c
49 48 breq1d b = Y X mulGrp P var 1 R P c deg 1 R b Y deg 1 R Y X mulGrp P var 1 R P c Y
50 fveq2 b = Y X mulGrp P var 1 R P c coe 1 b = coe 1 Y X mulGrp P var 1 R P c
51 50 fveq1d b = Y X mulGrp P var 1 R P c coe 1 b Y = coe 1 Y X mulGrp P var 1 R P c Y
52 51 eqeq2d b = Y X mulGrp P var 1 R P c coe 1 c X = coe 1 b Y coe 1 c X = coe 1 Y X mulGrp P var 1 R P c Y
53 49 52 anbi12d b = Y X mulGrp P var 1 R P c deg 1 R b Y coe 1 c X = coe 1 b Y deg 1 R Y X mulGrp P var 1 R P c Y coe 1 c X = coe 1 Y X mulGrp P var 1 R P c Y
54 53 rspcev Y X mulGrp P var 1 R P c I deg 1 R Y X mulGrp P var 1 R P c Y coe 1 c X = coe 1 Y X mulGrp P var 1 R P c Y b I deg 1 R b Y coe 1 c X = coe 1 b Y
55 31 43 47 54 syl12anc φ c I deg 1 R c X b I deg 1 R b Y coe 1 c X = coe 1 b Y
56 eqeq1 a = coe 1 c X a = coe 1 b Y coe 1 c X = coe 1 b Y
57 56 anbi2d a = coe 1 c X deg 1 R b Y a = coe 1 b Y deg 1 R b Y coe 1 c X = coe 1 b Y
58 57 rexbidv a = coe 1 c X b I deg 1 R b Y a = coe 1 b Y b I deg 1 R b Y coe 1 c X = coe 1 b Y
59 55 58 syl5ibrcom φ c I deg 1 R c X a = coe 1 c X b I deg 1 R b Y a = coe 1 b Y
60 59 expimpd φ c I deg 1 R c X a = coe 1 c X b I deg 1 R b Y a = coe 1 b Y
61 60 rexlimdva φ c I deg 1 R c X a = coe 1 c X b I deg 1 R b Y a = coe 1 b Y
62 61 ss2abdv φ a | c I deg 1 R c X a = coe 1 c X a | b I deg 1 R b Y a = coe 1 b Y
63 1 2 3 32 hbtlem1 R Ring I U X 0 S I X = a | c I deg 1 R c X a = coe 1 c X
64 4 5 6 63 syl3anc φ S I X = a | c I deg 1 R c X a = coe 1 c X
65 1 2 3 32 hbtlem1 R Ring I U Y 0 S I Y = a | b I deg 1 R b Y a = coe 1 b Y
66 4 5 7 65 syl3anc φ S I Y = a | b I deg 1 R b Y a = coe 1 b Y
67 62 64 66 3sstr4d φ S I X S I Y