Step |
Hyp |
Ref |
Expression |
1 |
|
hbtlem.p |
|
2 |
|
hbtlem.u |
|
3 |
|
hbtlem.s |
|
4 |
|
hbtlem3.r |
|
5 |
|
hbtlem3.i |
|
6 |
|
hbtlem3.j |
|
7 |
|
hbtlem3.ij |
|
8 |
|
hbtlem5.e |
|
9 |
|
eqid |
|
10 |
9 2
|
lidlss |
|
11 |
6 10
|
syl |
|
12 |
11
|
sselda |
|
13 |
|
eqid |
|
14 |
13 1 9
|
deg1cl |
|
15 |
12 14
|
syl |
|
16 |
|
elun |
|
17 |
|
nnssnn0 |
|
18 |
|
nn0re |
|
19 |
|
arch |
|
20 |
18 19
|
syl |
|
21 |
|
ssrexv |
|
22 |
17 20 21
|
mpsyl |
|
23 |
|
elsni |
|
24 |
|
0nn0 |
|
25 |
|
mnflt0 |
|
26 |
|
breq2 |
|
27 |
26
|
rspcev |
|
28 |
24 25 27
|
mp2an |
|
29 |
|
breq1 |
|
30 |
29
|
rexbidv |
|
31 |
28 30
|
mpbiri |
|
32 |
23 31
|
syl |
|
33 |
22 32
|
jaoi |
|
34 |
16 33
|
sylbi |
|
35 |
15 34
|
syl |
|
36 |
|
breq2 |
|
37 |
36
|
imbi1d |
|
38 |
37
|
ralbidv |
|
39 |
38
|
imbi2d |
|
40 |
|
breq2 |
|
41 |
40
|
imbi1d |
|
42 |
41
|
ralbidv |
|
43 |
42
|
imbi2d |
|
44 |
|
breq2 |
|
45 |
44
|
imbi1d |
|
46 |
45
|
ralbidv |
|
47 |
|
fveq2 |
|
48 |
47
|
breq1d |
|
49 |
|
eleq1 |
|
50 |
48 49
|
imbi12d |
|
51 |
50
|
cbvralvw |
|
52 |
46 51
|
bitrdi |
|
53 |
52
|
imbi2d |
|
54 |
4
|
adantr |
|
55 |
|
eqid |
|
56 |
13 1 55 9
|
deg1lt0 |
|
57 |
54 12 56
|
syl2anc |
|
58 |
1
|
ply1ring |
|
59 |
4 58
|
syl |
|
60 |
2 55
|
lidl0cl |
|
61 |
59 5 60
|
syl2anc |
|
62 |
|
eleq1a |
|
63 |
61 62
|
syl |
|
64 |
63
|
adantr |
|
65 |
57 64
|
sylbid |
|
66 |
65
|
ralrimiva |
|
67 |
11
|
3ad2ant2 |
|
68 |
67
|
sselda |
|
69 |
13 1 9
|
deg1cl |
|
70 |
68 69
|
syl |
|
71 |
|
simpl1 |
|
72 |
71
|
nn0zd |
|
73 |
|
degltp1le |
|
74 |
70 72 73
|
syl2anc |
|
75 |
|
fveq2 |
|
76 |
|
fveq2 |
|
77 |
75 76
|
sseq12d |
|
78 |
77
|
rspcva |
|
79 |
8 78
|
sylan2 |
|
80 |
4
|
adantl |
|
81 |
6
|
adantl |
|
82 |
|
simpl |
|
83 |
1 2 3 13
|
hbtlem1 |
|
84 |
80 81 82 83
|
syl3anc |
|
85 |
5
|
adantl |
|
86 |
1 2 3 13
|
hbtlem1 |
|
87 |
80 85 82 86
|
syl3anc |
|
88 |
79 84 87
|
3sstr3d |
|
89 |
88
|
3adant3 |
|
90 |
89
|
adantr |
|
91 |
|
simpl |
|
92 |
|
simpr |
|
93 |
|
eqidd |
|
94 |
|
fveq2 |
|
95 |
94
|
breq1d |
|
96 |
|
fveq2 |
|
97 |
96
|
fveq1d |
|
98 |
97
|
eqeq2d |
|
99 |
95 98
|
anbi12d |
|
100 |
99
|
rspcev |
|
101 |
91 92 93 100
|
syl12anc |
|
102 |
|
fvex |
|
103 |
|
eqeq1 |
|
104 |
103
|
anbi2d |
|
105 |
104
|
rexbidv |
|
106 |
102 105
|
elab |
|
107 |
101 106
|
sylibr |
|
108 |
107
|
adantl |
|
109 |
90 108
|
sseldd |
|
110 |
104
|
rexbidv |
|
111 |
102 110
|
elab |
|
112 |
|
simpll2 |
|
113 |
112 59
|
syl |
|
114 |
|
ringgrp |
|
115 |
113 114
|
syl |
|
116 |
112 11
|
syl |
|
117 |
|
simplrl |
|
118 |
116 117
|
sseldd |
|
119 |
9 2
|
lidlss |
|
120 |
5 119
|
syl |
|
121 |
112 120
|
syl |
|
122 |
|
simprl |
|
123 |
121 122
|
sseldd |
|
124 |
|
eqid |
|
125 |
|
eqid |
|
126 |
9 124 125
|
grpnpcan |
|
127 |
115 118 123 126
|
syl3anc |
|
128 |
5
|
3ad2ant2 |
|
129 |
128
|
ad2antrr |
|
130 |
|
simpll1 |
|
131 |
112 4
|
syl |
|
132 |
|
simplrr |
|
133 |
|
simprrl |
|
134 |
|
eqid |
|
135 |
|
eqid |
|
136 |
|
simprrr |
|
137 |
13 1 9 125 130 131 118 132 123 133 134 135 136
|
deg1sublt |
|
138 |
112 6
|
syl |
|
139 |
7
|
3ad2ant2 |
|
140 |
139
|
ad2antrr |
|
141 |
140 122
|
sseldd |
|
142 |
2 125
|
lidlsubcl |
|
143 |
113 138 117 141 142
|
syl22anc |
|
144 |
|
simpll3 |
|
145 |
|
fveq2 |
|
146 |
145
|
breq1d |
|
147 |
|
eleq1 |
|
148 |
146 147
|
imbi12d |
|
149 |
148
|
rspcva |
|
150 |
143 144 149
|
syl2anc |
|
151 |
137 150
|
mpd |
|
152 |
2 124
|
lidlacl |
|
153 |
113 129 151 122 152
|
syl22anc |
|
154 |
127 153
|
eqeltrrd |
|
155 |
154
|
rexlimdvaa |
|
156 |
111 155
|
syl5bi |
|
157 |
109 156
|
mpd |
|
158 |
157
|
expr |
|
159 |
74 158
|
sylbid |
|
160 |
159
|
ralrimiva |
|
161 |
160
|
3exp |
|
162 |
161
|
a2d |
|
163 |
39 43 53 43 66 162
|
nn0ind |
|
164 |
|
rsp |
|
165 |
163 164
|
syl6com |
|
166 |
165
|
com23 |
|
167 |
166
|
imp |
|
168 |
167
|
rexlimdv |
|
169 |
35 168
|
mpd |
|
170 |
7 169
|
eqelssd |
|