Metamath Proof Explorer


Theorem hbtlem6

Description: There is a finite set of polynomials matching any single stage of the image. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses hbtlem.p P = Poly 1 R
hbtlem.u U = LIdeal P
hbtlem.s S = ldgIdlSeq R
hbtlem6.n N = RSpan P
hbtlem6.r φ R LNoeR
hbtlem6.i φ I U
hbtlem6.x φ X 0
Assertion hbtlem6 φ k 𝒫 I Fin S I X S N k X

Proof

Step Hyp Ref Expression
1 hbtlem.p P = Poly 1 R
2 hbtlem.u U = LIdeal P
3 hbtlem.s S = ldgIdlSeq R
4 hbtlem6.n N = RSpan P
5 hbtlem6.r φ R LNoeR
6 hbtlem6.i φ I U
7 hbtlem6.x φ X 0
8 lnrring R LNoeR R Ring
9 5 8 syl φ R Ring
10 eqid LIdeal R = LIdeal R
11 1 2 3 10 hbtlem2 R Ring I U X 0 S I X LIdeal R
12 9 6 7 11 syl3anc φ S I X LIdeal R
13 eqid RSpan R = RSpan R
14 10 13 lnr2i R LNoeR S I X LIdeal R a 𝒫 S I X Fin S I X = RSpan R a
15 5 12 14 syl2anc φ a 𝒫 S I X Fin S I X = RSpan R a
16 elfpw a 𝒫 S I X Fin a S I X a Fin
17 fvex coe 1 b X V
18 eqid b c I | deg 1 R c X coe 1 b X = b c I | deg 1 R c X coe 1 b X
19 17 18 fnmpti b c I | deg 1 R c X coe 1 b X Fn c I | deg 1 R c X
20 19 a1i φ a S I X a Fin b c I | deg 1 R c X coe 1 b X Fn c I | deg 1 R c X
21 simprl φ a S I X a Fin a S I X
22 eqid deg 1 R = deg 1 R
23 1 2 3 22 hbtlem1 R LNoeR I U X 0 S I X = d | b I deg 1 R b X d = coe 1 b X
24 5 6 7 23 syl3anc φ S I X = d | b I deg 1 R b X d = coe 1 b X
25 18 rnmpt ran b c I | deg 1 R c X coe 1 b X = d | b c I | deg 1 R c X d = coe 1 b X
26 fveq2 c = b deg 1 R c = deg 1 R b
27 26 breq1d c = b deg 1 R c X deg 1 R b X
28 27 rexrab b c I | deg 1 R c X d = coe 1 b X b I deg 1 R b X d = coe 1 b X
29 28 abbii d | b c I | deg 1 R c X d = coe 1 b X = d | b I deg 1 R b X d = coe 1 b X
30 25 29 eqtri ran b c I | deg 1 R c X coe 1 b X = d | b I deg 1 R b X d = coe 1 b X
31 24 30 eqtr4di φ S I X = ran b c I | deg 1 R c X coe 1 b X
32 31 adantr φ a S I X a Fin S I X = ran b c I | deg 1 R c X coe 1 b X
33 21 32 sseqtrd φ a S I X a Fin a ran b c I | deg 1 R c X coe 1 b X
34 simprr φ a S I X a Fin a Fin
35 fipreima b c I | deg 1 R c X coe 1 b X Fn c I | deg 1 R c X a ran b c I | deg 1 R c X coe 1 b X a Fin k 𝒫 c I | deg 1 R c X Fin b c I | deg 1 R c X coe 1 b X k = a
36 20 33 34 35 syl3anc φ a S I X a Fin k 𝒫 c I | deg 1 R c X Fin b c I | deg 1 R c X coe 1 b X k = a
37 elfpw k 𝒫 c I | deg 1 R c X Fin k c I | deg 1 R c X k Fin
38 ssrab2 c I | deg 1 R c X I
39 sstr2 k c I | deg 1 R c X c I | deg 1 R c X I k I
40 38 39 mpi k c I | deg 1 R c X k I
41 40 adantl φ k c I | deg 1 R c X k I
42 velpw k 𝒫 I k I
43 41 42 sylibr φ k c I | deg 1 R c X k 𝒫 I
44 43 adantrr φ k c I | deg 1 R c X k Fin k 𝒫 I
45 simprr φ k c I | deg 1 R c X k Fin k Fin
46 44 45 elind φ k c I | deg 1 R c X k Fin k 𝒫 I Fin
47 9 adantr φ k c I | deg 1 R c X k Fin R Ring
48 1 ply1ring R Ring P Ring
49 9 48 syl φ P Ring
50 49 adantr φ k c I | deg 1 R c X k Fin P Ring
51 simprl φ k c I | deg 1 R c X k Fin k c I | deg 1 R c X
52 51 38 sstrdi φ k c I | deg 1 R c X k Fin k I
53 eqid Base P = Base P
54 53 2 lidlss I U I Base P
55 6 54 syl φ I Base P
56 55 adantr φ k c I | deg 1 R c X k Fin I Base P
57 52 56 sstrd φ k c I | deg 1 R c X k Fin k Base P
58 4 53 2 rspcl P Ring k Base P N k U
59 50 57 58 syl2anc φ k c I | deg 1 R c X k Fin N k U
60 7 adantr φ k c I | deg 1 R c X k Fin X 0
61 1 2 3 10 hbtlem2 R Ring N k U X 0 S N k X LIdeal R
62 47 59 60 61 syl3anc φ k c I | deg 1 R c X k Fin S N k X LIdeal R
63 df-ima b c I | deg 1 R c X coe 1 b X k = ran b c I | deg 1 R c X coe 1 b X k
64 4 53 rspssid P Ring k Base P k N k
65 50 57 64 syl2anc φ k c I | deg 1 R c X k Fin k N k
66 ssrab k c I | deg 1 R c X k I c k deg 1 R c X
67 66 simprbi k c I | deg 1 R c X c k deg 1 R c X
68 67 ad2antrl φ k c I | deg 1 R c X k Fin c k deg 1 R c X
69 ssrab k c N k | deg 1 R c X k N k c k deg 1 R c X
70 65 68 69 sylanbrc φ k c I | deg 1 R c X k Fin k c N k | deg 1 R c X
71 70 resmptd φ k c I | deg 1 R c X k Fin b c N k | deg 1 R c X coe 1 b X k = b k coe 1 b X
72 resmpt k c I | deg 1 R c X b c I | deg 1 R c X coe 1 b X k = b k coe 1 b X
73 72 ad2antrl φ k c I | deg 1 R c X k Fin b c I | deg 1 R c X coe 1 b X k = b k coe 1 b X
74 71 73 eqtr4d φ k c I | deg 1 R c X k Fin b c N k | deg 1 R c X coe 1 b X k = b c I | deg 1 R c X coe 1 b X k
75 resss b c N k | deg 1 R c X coe 1 b X k b c N k | deg 1 R c X coe 1 b X
76 74 75 eqsstrrdi φ k c I | deg 1 R c X k Fin b c I | deg 1 R c X coe 1 b X k b c N k | deg 1 R c X coe 1 b X
77 rnss b c I | deg 1 R c X coe 1 b X k b c N k | deg 1 R c X coe 1 b X ran b c I | deg 1 R c X coe 1 b X k ran b c N k | deg 1 R c X coe 1 b X
78 76 77 syl φ k c I | deg 1 R c X k Fin ran b c I | deg 1 R c X coe 1 b X k ran b c N k | deg 1 R c X coe 1 b X
79 63 78 eqsstrid φ k c I | deg 1 R c X k Fin b c I | deg 1 R c X coe 1 b X k ran b c N k | deg 1 R c X coe 1 b X
80 1 2 3 22 hbtlem1 R Ring N k U X 0 S N k X = e | b N k deg 1 R b X e = coe 1 b X
81 47 59 60 80 syl3anc φ k c I | deg 1 R c X k Fin S N k X = e | b N k deg 1 R b X e = coe 1 b X
82 eqid b c N k | deg 1 R c X coe 1 b X = b c N k | deg 1 R c X coe 1 b X
83 82 rnmpt ran b c N k | deg 1 R c X coe 1 b X = e | b c N k | deg 1 R c X e = coe 1 b X
84 27 rexrab b c N k | deg 1 R c X e = coe 1 b X b N k deg 1 R b X e = coe 1 b X
85 84 abbii e | b c N k | deg 1 R c X e = coe 1 b X = e | b N k deg 1 R b X e = coe 1 b X
86 83 85 eqtri ran b c N k | deg 1 R c X coe 1 b X = e | b N k deg 1 R b X e = coe 1 b X
87 81 86 eqtr4di φ k c I | deg 1 R c X k Fin S N k X = ran b c N k | deg 1 R c X coe 1 b X
88 79 87 sseqtrrd φ k c I | deg 1 R c X k Fin b c I | deg 1 R c X coe 1 b X k S N k X
89 13 10 rspssp R Ring S N k X LIdeal R b c I | deg 1 R c X coe 1 b X k S N k X RSpan R b c I | deg 1 R c X coe 1 b X k S N k X
90 47 62 88 89 syl3anc φ k c I | deg 1 R c X k Fin RSpan R b c I | deg 1 R c X coe 1 b X k S N k X
91 46 90 jca φ k c I | deg 1 R c X k Fin k 𝒫 I Fin RSpan R b c I | deg 1 R c X coe 1 b X k S N k X
92 fveq2 b c I | deg 1 R c X coe 1 b X k = a RSpan R b c I | deg 1 R c X coe 1 b X k = RSpan R a
93 92 sseq1d b c I | deg 1 R c X coe 1 b X k = a RSpan R b c I | deg 1 R c X coe 1 b X k S N k X RSpan R a S N k X
94 93 anbi2d b c I | deg 1 R c X coe 1 b X k = a k 𝒫 I Fin RSpan R b c I | deg 1 R c X coe 1 b X k S N k X k 𝒫 I Fin RSpan R a S N k X
95 91 94 syl5ibcom φ k c I | deg 1 R c X k Fin b c I | deg 1 R c X coe 1 b X k = a k 𝒫 I Fin RSpan R a S N k X
96 37 95 sylan2b φ k 𝒫 c I | deg 1 R c X Fin b c I | deg 1 R c X coe 1 b X k = a k 𝒫 I Fin RSpan R a S N k X
97 96 expimpd φ k 𝒫 c I | deg 1 R c X Fin b c I | deg 1 R c X coe 1 b X k = a k 𝒫 I Fin RSpan R a S N k X
98 97 adantr φ a S I X a Fin k 𝒫 c I | deg 1 R c X Fin b c I | deg 1 R c X coe 1 b X k = a k 𝒫 I Fin RSpan R a S N k X
99 98 reximdv2 φ a S I X a Fin k 𝒫 c I | deg 1 R c X Fin b c I | deg 1 R c X coe 1 b X k = a k 𝒫 I Fin RSpan R a S N k X
100 36 99 mpd φ a S I X a Fin k 𝒫 I Fin RSpan R a S N k X
101 16 100 sylan2b φ a 𝒫 S I X Fin k 𝒫 I Fin RSpan R a S N k X
102 sseq1 S I X = RSpan R a S I X S N k X RSpan R a S N k X
103 102 rexbidv S I X = RSpan R a k 𝒫 I Fin S I X S N k X k 𝒫 I Fin RSpan R a S N k X
104 101 103 syl5ibrcom φ a 𝒫 S I X Fin S I X = RSpan R a k 𝒫 I Fin S I X S N k X
105 104 rexlimdva φ a 𝒫 S I X Fin S I X = RSpan R a k 𝒫 I Fin S I X S N k X
106 15 105 mpd φ k 𝒫 I Fin S I X S N k X