Metamath Proof Explorer


Theorem hbxfreq

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi for equivalence version. (Contributed by NM, 21-Aug-2007)

Ref Expression
Hypotheses hbxfr.1 A = B
hbxfr.2 y B x y B
Assertion hbxfreq y A x y A

Proof

Step Hyp Ref Expression
1 hbxfr.1 A = B
2 hbxfr.2 y B x y B
3 1 eleq2i y A y B
4 3 2 hbxfrbi y A x y A