Metamath Proof Explorer


Theorem hdmap10lem

Description: Lemma for hdmap10 . (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmap10.h H = LHyp K
hdmap10.u U = DVecH K W
hdmap10.v V = Base U
hdmap10.n N = LSpan U
hdmap10.c C = LCDual K W
hdmap10.l L = LSpan C
hdmap10.m M = mapd K W
hdmap10.s S = HDMap K W
hdmap10.k φ K HL W H
hdmap10.e E = I Base K I LTrn K W
hdmap10.o 0 ˙ = 0 U
hdmap10.d D = Base C
hdmap10.j J = HVMap K W
hdmap10.i I = HDMap1 K W
hdmap10lem.t φ T V 0 ˙
Assertion hdmap10lem φ M N T = L S T

Proof

Step Hyp Ref Expression
1 hdmap10.h H = LHyp K
2 hdmap10.u U = DVecH K W
3 hdmap10.v V = Base U
4 hdmap10.n N = LSpan U
5 hdmap10.c C = LCDual K W
6 hdmap10.l L = LSpan C
7 hdmap10.m M = mapd K W
8 hdmap10.s S = HDMap K W
9 hdmap10.k φ K HL W H
10 hdmap10.e E = I Base K I LTrn K W
11 hdmap10.o 0 ˙ = 0 U
12 hdmap10.d D = Base C
13 hdmap10.j J = HVMap K W
14 hdmap10.i I = HDMap1 K W
15 hdmap10lem.t φ T V 0 ˙
16 eqid Base K = Base K
17 eqid LTrn K W = LTrn K W
18 1 16 17 2 3 11 10 9 dvheveccl φ E V 0 ˙
19 18 eldifad φ E V
20 15 eldifad φ T V
21 1 2 3 4 9 19 20 dvh3dim φ x V ¬ x N E T
22 9 3ad2ant1 φ x V ¬ x N E T K HL W H
23 20 3ad2ant1 φ x V ¬ x N E T T V
24 simp2 φ x V ¬ x N E T x V
25 eqid LSubSp U = LSubSp U
26 1 2 9 dvhlmod φ U LMod
27 3 25 4 26 19 20 lspprcl φ N E T LSubSp U
28 3 4 26 19 20 lspprid1 φ E N E T
29 25 4 26 27 28 lspsnel5a φ N E N E T
30 3 4 26 19 20 lspprid2 φ T N E T
31 25 4 26 27 30 lspsnel5a φ N T N E T
32 29 31 unssd φ N E N T N E T
33 32 sseld φ x N E N T x N E T
34 33 con3dimp φ ¬ x N E T ¬ x N E N T
35 34 3adant2 φ x V ¬ x N E T ¬ x N E N T
36 1 10 2 3 4 5 12 13 14 8 22 23 24 35 hdmapval2 φ x V ¬ x N E T S T = I x I E J E x T
37 36 eqcomd φ x V ¬ x N E T I x I E J E x T = S T
38 eqid - U = - U
39 eqid - C = - C
40 26 3ad2ant1 φ x V ¬ x N E T U LMod
41 27 3ad2ant1 φ x V ¬ x N E T N E T LSubSp U
42 simp3 φ x V ¬ x N E T ¬ x N E T
43 11 25 40 41 24 42 lssneln0 φ x V ¬ x N E T x V 0 ˙
44 eqid 0 C = 0 C
45 1 2 3 11 5 12 44 13 9 18 hvmapcl2 φ J E D 0 C
46 45 eldifad φ J E D
47 46 3ad2ant1 φ x V ¬ x N E T J E D
48 1 2 3 11 4 5 6 7 13 9 18 mapdhvmap φ M N E = L J E
49 48 3ad2ant1 φ x V ¬ x N E T M N E = L J E
50 1 2 9 dvhlvec φ U LVec
51 50 3ad2ant1 φ x V ¬ x N E T U LVec
52 19 3ad2ant1 φ x V ¬ x N E T E V
53 3 4 51 24 52 23 42 lspindpi φ x V ¬ x N E T N x N E N x N T
54 53 simpld φ x V ¬ x N E T N x N E
55 54 necomd φ x V ¬ x N E T N E N x
56 18 3ad2ant1 φ x V ¬ x N E T E V 0 ˙
57 1 2 3 11 4 5 12 6 7 14 22 47 49 55 56 24 hdmap1cl φ x V ¬ x N E T I E J E x D
58 15 3ad2ant1 φ x V ¬ x N E T T V 0 ˙
59 1 2 3 5 12 8 9 20 hdmapcl φ S T D
60 59 3ad2ant1 φ x V ¬ x N E T S T D
61 53 simprd φ x V ¬ x N E T N x N T
62 eqid I E J E x = I E J E x
63 1 2 3 38 11 4 5 12 39 6 7 14 22 56 47 43 57 55 49 hdmap1eq φ x V ¬ x N E T I E J E x = I E J E x M N x = L I E J E x M N E - U x = L J E - C I E J E x
64 62 63 mpbii φ x V ¬ x N E T M N x = L I E J E x M N E - U x = L J E - C I E J E x
65 64 simpld φ x V ¬ x N E T M N x = L I E J E x
66 1 2 3 38 11 4 5 12 39 6 7 14 22 43 57 58 60 61 65 hdmap1eq φ x V ¬ x N E T I x I E J E x T = S T M N T = L S T M N x - U T = L I E J E x - C S T
67 37 66 mpbid φ x V ¬ x N E T M N T = L S T M N x - U T = L I E J E x - C S T
68 67 simpld φ x V ¬ x N E T M N T = L S T
69 68 rexlimdv3a φ x V ¬ x N E T M N T = L S T
70 21 69 mpd φ M N T = L S T