Metamath Proof Explorer


Theorem hdmap1l6e

Description: Lemmma for hdmap1l6 . Part (6) in Baer p. 47 line 38. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h H = LHyp K
hdmap1l6.u U = DVecH K W
hdmap1l6.v V = Base U
hdmap1l6.p + ˙ = + U
hdmap1l6.s - ˙ = - U
hdmap1l6c.o 0 ˙ = 0 U
hdmap1l6.n N = LSpan U
hdmap1l6.c C = LCDual K W
hdmap1l6.d D = Base C
hdmap1l6.a ˙ = + C
hdmap1l6.r R = - C
hdmap1l6.q Q = 0 C
hdmap1l6.l L = LSpan C
hdmap1l6.m M = mapd K W
hdmap1l6.i I = HDMap1 K W
hdmap1l6.k φ K HL W H
hdmap1l6.f φ F D
hdmap1l6cl.x φ X V 0 ˙
hdmap1l6.mn φ M N X = L F
hdmap1l6d.xn φ ¬ X N Y Z
hdmap1l6d.yz φ N Y = N Z
hdmap1l6d.y φ Y V 0 ˙
hdmap1l6d.z φ Z V 0 ˙
hdmap1l6d.w φ w V 0 ˙
hdmap1l6d.wn φ ¬ w N X Y
Assertion hdmap1l6e φ I X F w + ˙ Y + ˙ Z = I X F w + ˙ Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H = LHyp K
2 hdmap1l6.u U = DVecH K W
3 hdmap1l6.v V = Base U
4 hdmap1l6.p + ˙ = + U
5 hdmap1l6.s - ˙ = - U
6 hdmap1l6c.o 0 ˙ = 0 U
7 hdmap1l6.n N = LSpan U
8 hdmap1l6.c C = LCDual K W
9 hdmap1l6.d D = Base C
10 hdmap1l6.a ˙ = + C
11 hdmap1l6.r R = - C
12 hdmap1l6.q Q = 0 C
13 hdmap1l6.l L = LSpan C
14 hdmap1l6.m M = mapd K W
15 hdmap1l6.i I = HDMap1 K W
16 hdmap1l6.k φ K HL W H
17 hdmap1l6.f φ F D
18 hdmap1l6cl.x φ X V 0 ˙
19 hdmap1l6.mn φ M N X = L F
20 hdmap1l6d.xn φ ¬ X N Y Z
21 hdmap1l6d.yz φ N Y = N Z
22 hdmap1l6d.y φ Y V 0 ˙
23 hdmap1l6d.z φ Z V 0 ˙
24 hdmap1l6d.w φ w V 0 ˙
25 hdmap1l6d.wn φ ¬ w N X Y
26 1 2 16 dvhlmod φ U LMod
27 24 eldifad φ w V
28 22 eldifad φ Y V
29 3 4 lmodvacl U LMod w V Y V w + ˙ Y V
30 26 27 28 29 syl3anc φ w + ˙ Y V
31 1 2 16 dvhlvec φ U LVec
32 18 eldifad φ X V
33 3 7 31 27 32 28 25 lspindpi φ N w N X N w N Y
34 33 simprd φ N w N Y
35 3 4 6 7 26 27 28 34 lmodindp1 φ w + ˙ Y 0 ˙
36 eldifsn w + ˙ Y V 0 ˙ w + ˙ Y V w + ˙ Y 0 ˙
37 30 35 36 sylanbrc φ w + ˙ Y V 0 ˙
38 23 eldifad φ Z V
39 3 7 31 32 28 38 20 lspindpi φ N X N Y N X N Z
40 39 simpld φ N X N Y
41 3 4 6 7 31 18 22 23 24 21 40 25 mapdindp3 φ N X N w + ˙ Y
42 3 4 6 7 31 18 22 23 24 21 40 25 mapdindp4 φ ¬ Z N X w + ˙ Y
43 3 6 7 31 18 30 38 41 42 lspindp1 φ N Z N w + ˙ Y ¬ X N Z w + ˙ Y
44 43 simprd φ ¬ X N Z w + ˙ Y
45 prcom w + ˙ Y Z = Z w + ˙ Y
46 45 fveq2i N w + ˙ Y Z = N Z w + ˙ Y
47 46 eleq2i X N w + ˙ Y Z X N Z w + ˙ Y
48 44 47 sylnibr φ ¬ X N w + ˙ Y Z
49 3 7 31 38 32 30 42 lspindpi φ N Z N X N Z N w + ˙ Y
50 49 simprd φ N Z N w + ˙ Y
51 50 necomd φ N w + ˙ Y N Z
52 eqidd φ I X F w + ˙ Y = I X F w + ˙ Y
53 eqidd φ I X F Z = I X F Z
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 37 23 48 51 52 53 hdmap1l6a φ I X F w + ˙ Y + ˙ Z = I X F w + ˙ Y ˙ I X F Z