Metamath Proof Explorer


Theorem hdmapipcl

Description: The inner product (Hermitian form) ( X , Y ) will be defined as ( ( SY )X ) . Show closure. (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypotheses hdmapipcl.h H = LHyp K
hdmapipcl.u U = DVecH K W
hdmapipcl.v V = Base U
hdmapipcl.r R = Scalar U
hdmapipcl.b B = Base R
hdmapipcl.s S = HDMap K W
hdmapipcl.k φ K HL W H
hdmapipcl.x φ X V
hdmapipcl.y φ Y V
Assertion hdmapipcl φ S Y X B

Proof

Step Hyp Ref Expression
1 hdmapipcl.h H = LHyp K
2 hdmapipcl.u U = DVecH K W
3 hdmapipcl.v V = Base U
4 hdmapipcl.r R = Scalar U
5 hdmapipcl.b B = Base R
6 hdmapipcl.s S = HDMap K W
7 hdmapipcl.k φ K HL W H
8 hdmapipcl.x φ X V
9 hdmapipcl.y φ Y V
10 eqid LCDual K W = LCDual K W
11 eqid Base LCDual K W = Base LCDual K W
12 1 2 3 10 11 6 7 9 hdmapcl φ S Y Base LCDual K W
13 1 2 3 4 5 10 11 7 12 8 lcdvbasecl φ S Y X B