Metamath Proof Explorer


Theorem hdmapsub

Description: Part of proof of part 12 in Baer p. 49 line 5, (a-b)S = aS-bS in their notation (S = sigma). (Contributed by NM, 26-May-2015)

Ref Expression
Hypotheses hdmap12c.h H = LHyp K
hdmap12c.u U = DVecH K W
hdmap12c.v V = Base U
hdmap12c.m - ˙ = - U
hdmap12c.c C = LCDual K W
hdmap12c.n N = - C
hdmap12c.s S = HDMap K W
hdmap12c.k φ K HL W H
hdmap12c.x φ X V
hdmap12c.y φ Y V
Assertion hdmapsub φ S X - ˙ Y = S X N S Y

Proof

Step Hyp Ref Expression
1 hdmap12c.h H = LHyp K
2 hdmap12c.u U = DVecH K W
3 hdmap12c.v V = Base U
4 hdmap12c.m - ˙ = - U
5 hdmap12c.c C = LCDual K W
6 hdmap12c.n N = - C
7 hdmap12c.s S = HDMap K W
8 hdmap12c.k φ K HL W H
9 hdmap12c.x φ X V
10 hdmap12c.y φ Y V
11 eqid + U = + U
12 eqid inv g U = inv g U
13 3 11 12 4 grpsubval X V Y V X - ˙ Y = X + U inv g U Y
14 9 10 13 syl2anc φ X - ˙ Y = X + U inv g U Y
15 14 fveq2d φ S X - ˙ Y = S X + U inv g U Y
16 eqid + C = + C
17 1 2 8 dvhlmod φ U LMod
18 3 12 lmodvnegcl U LMod Y V inv g U Y V
19 17 10 18 syl2anc φ inv g U Y V
20 1 2 3 11 5 16 7 8 9 19 hdmapadd φ S X + U inv g U Y = S X + C S inv g U Y
21 eqid inv g C = inv g C
22 1 2 3 12 5 21 7 8 10 hdmapneg φ S inv g U Y = inv g C S Y
23 22 oveq2d φ S X + C S inv g U Y = S X + C inv g C S Y
24 15 20 23 3eqtrd φ S X - ˙ Y = S X + C inv g C S Y
25 eqid Base C = Base C
26 1 2 3 5 25 7 8 9 hdmapcl φ S X Base C
27 1 2 3 5 25 7 8 10 hdmapcl φ S Y Base C
28 25 16 21 6 grpsubval S X Base C S Y Base C S X N S Y = S X + C inv g C S Y
29 26 27 28 syl2anc φ S X N S Y = S X + C inv g C S Y
30 24 29 eqtr4d φ S X - ˙ Y = S X N S Y